Step | Hyp | Ref
| Expression |
1 | | sumeq1 11318 |
. . . 4
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
2 | 1 | mpteq2dv 4080 |
. . 3
⊢ (𝑤 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵)) |
3 | 2 | eleq1d 2239 |
. 2
⊢ (𝑤 = ∅ → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))) |
4 | | sumeq1 11318 |
. . . 4
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝑦 𝐵) |
5 | 4 | mpteq2dv 4080 |
. . 3
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵)) |
6 | 5 | eleq1d 2239 |
. 2
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) |
7 | | sumeq1 11318 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
8 | 7 | mpteq2dv 4080 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
9 | 8 | eleq1d 2239 |
. 2
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))) |
10 | | sumeq1 11318 |
. . . 4
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
11 | 10 | mpteq2dv 4080 |
. . 3
⊢ (𝑤 = 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵)) |
12 | 11 | eleq1d 2239 |
. 2
⊢ (𝑤 = 𝐴 → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾))) |
13 | | sum0 11351 |
. . . 4
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
14 | 13 | mpteq2i 4076 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥 ∈ 𝑋 ↦ 0) |
15 | | fsumcn.4 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
16 | | fsumcncntop.3 |
. . . . . 6
⊢ 𝐾 = (MetOpen‘(abs ∘
− )) |
17 | 16 | cntoptopon 13326 |
. . . . 5
⊢ 𝐾 ∈
(TopOn‘ℂ) |
18 | 17 | a1i 9 |
. . . 4
⊢ (𝜑 → 𝐾 ∈
(TopOn‘ℂ)) |
19 | | 0cnd 7913 |
. . . 4
⊢ (𝜑 → 0 ∈
ℂ) |
20 | 15, 18, 19 | cnmptc 13076 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾)) |
21 | 14, 20 | eqeltrid 2257 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)) |
22 | | simplrr 531 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
23 | 22 | eldifbd 3133 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → ¬ 𝑧 ∈ 𝑦) |
24 | | disjsn 3645 |
. . . . . . . . . 10
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
25 | 23, 24 | sylibr 133 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∩ {𝑧}) = ∅) |
26 | | eqidd 2171 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
27 | | simpllr 529 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → 𝑦 ∈ Fin) |
28 | | unsnfi 6896 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Fin ∧ 𝑧 ∈ (𝐴 ∖ 𝑦) ∧ ¬ 𝑧 ∈ 𝑦) → (𝑦 ∪ {𝑧}) ∈ Fin) |
29 | 27, 22, 23, 28 | syl3anc 1233 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∪ {𝑧}) ∈ Fin) |
30 | | simp-4l 536 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑) |
31 | | simplrl 530 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → 𝑦 ⊆ 𝐴) |
32 | 22 | eldifad 3132 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → 𝑧 ∈ 𝐴) |
33 | 32 | snssd 3725 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → {𝑧} ⊆ 𝐴) |
34 | 31, 33 | unssd 3303 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∪ {𝑧}) ⊆ 𝐴) |
35 | 34 | sselda 3147 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐴) |
36 | | simplr 525 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥 ∈ 𝑋) |
37 | 15 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝑋)) |
38 | 17 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ∈
(TopOn‘ℂ)) |
39 | | fsumcn.6 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
40 | | cnf2 12999 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
41 | 37, 38, 39, 40 | syl3anc 1233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
42 | | eqid 2170 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) |
43 | 42 | fmpt 5646 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
44 | 41, 43 | sylibr 133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
45 | | rsp 2517 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ ℂ → (𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ)) |
46 | 44, 45 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ)) |
47 | 46 | imp 123 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
48 | 30, 35, 36, 47 | syl21anc 1232 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ) |
49 | 25, 26, 29, 48 | fsumsplit 11370 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵)) |
50 | | simplll 528 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → 𝜑) |
51 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
52 | 46 | impancom 258 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐴 → 𝐵 ∈ ℂ)) |
53 | 52 | ralrimiv 2542 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
54 | 50, 51, 53 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
55 | | nfcsb1v 3082 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
56 | 55 | nfel1 2323 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ |
57 | | csbeq1a 3058 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
58 | 57 | eleq1d 2239 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
59 | 56, 58 | rspc 2828 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
60 | 32, 54, 59 | sylc 62 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
61 | | sumsns 11378 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ (𝐴 ∖ 𝑦) ∧ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
62 | 22, 60, 61 | syl2anc 409 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
63 | 62 | oveq2d 5869 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → (Σ𝑘 ∈ 𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) |
64 | 49, 63 | eqtrd 2203 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) |
65 | 64 | mpteq2dva 4079 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) |
66 | 65 | adantr 274 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) |
67 | | nfcv 2312 |
. . . . . 6
⊢
Ⅎ𝑤(Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) |
68 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑦 |
69 | | nfcsb1v 3082 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐵 |
70 | 68, 69 | nfsum 11320 |
. . . . . . 7
⊢
Ⅎ𝑥Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 |
71 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑥
+ |
72 | | nfcv 2312 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑧 |
73 | 72, 69 | nfcsb 3086 |
. . . . . . 7
⊢
Ⅎ𝑥⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵 |
74 | 70, 71, 73 | nfov 5883 |
. . . . . 6
⊢
Ⅎ𝑥(Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) |
75 | | csbeq1a 3058 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → 𝐵 = ⦋𝑤 / 𝑥⦌𝐵) |
76 | 75 | sumeq2ad 11332 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵) |
77 | 75 | csbeq2dv 3075 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → ⦋𝑧 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) |
78 | 76, 77 | oveq12d 5871 |
. . . . . 6
⊢ (𝑥 = 𝑤 → (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) = (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵)) |
79 | 67, 74, 78 | cbvmpt 4084 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) = (𝑤 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵)) |
80 | 66, 79 | eqtrdi 2219 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵))) |
81 | 15 | ad3antrrr 489 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋)) |
82 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑤Σ𝑘 ∈ 𝑦 𝐵 |
83 | 82, 70, 76 | cbvmpt 4084 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) = (𝑤 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵) |
84 | | simpr 109 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) |
85 | 83, 84 | eqeltrrid 2258 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
86 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑤⦋𝑧 / 𝑘⦌𝐵 |
87 | 86, 73, 77 | cbvmpt 4084 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) = (𝑤 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) |
88 | | simprr 527 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
89 | 88 | eldifad 3132 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → 𝑧 ∈ 𝐴) |
90 | 89 | adantr 274 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑧 ∈ 𝐴) |
91 | 39 | ralrimiva 2543 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
92 | 91 | ad3antrrr 489 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ∀𝑘 ∈ 𝐴 (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
93 | | nfcv 2312 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝑋 |
94 | 93, 55 | nfmpt 4081 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) |
95 | 94 | nfel1 2323 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾) |
96 | 57 | mpteq2dv 4080 |
. . . . . . . . 9
⊢ (𝑘 = 𝑧 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵)) |
97 | 96 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑘 = 𝑧 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
98 | 95, 97 | rspc 2828 |
. . . . . . 7
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
99 | 90, 92, 98 | sylc 62 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
100 | 87, 99 | eqeltrrid 2258 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
101 | 16 | addcncntop 13346 |
. . . . . 6
⊢ + ∈
((𝐾 ×t
𝐾) Cn 𝐾) |
102 | 101 | a1i 9 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
103 | 81, 85, 100, 102 | cnmpt12f 13080 |
. . . 4
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵)) ∈ (𝐽 Cn 𝐾)) |
104 | 80, 103 | eqeltrd 2247 |
. . 3
⊢ ((((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)) |
105 | 104 | ex 114 |
. 2
⊢ (((𝜑 ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))) |
106 | | fsumcn.5 |
. 2
⊢ (𝜑 → 𝐴 ∈ Fin) |
107 | 3, 6, 9, 12, 21, 105, 106 | findcard2sd 6870 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) |