ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcncntop GIF version

Theorem fsumcncntop 14746
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcncntop.3 𝐾 = (MetOpen‘(abs ∘ − ))
fsumcncntop.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
fsumcncntop.5 (𝜑𝐴 ∈ Fin)
fsumcncntop.6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fsumcncntop (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)

Proof of Theorem fsumcncntop
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11501 . . . 4 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21mpteq2dv 4121 . . 3 (𝑤 = ∅ → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵))
32eleq1d 2262 . 2 (𝑤 = ∅ → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
4 sumeq1 11501 . . . 4 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
54mpteq2dv 4121 . . 3 (𝑤 = 𝑦 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵))
65eleq1d 2262 . 2 (𝑤 = 𝑦 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
7 sumeq1 11501 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
87mpteq2dv 4121 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
98eleq1d 2262 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
10 sumeq1 11501 . . . 4 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
1110mpteq2dv 4121 . . 3 (𝑤 = 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
1211eleq1d 2262 . 2 (𝑤 = 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
13 sum0 11534 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
1413mpteq2i 4117 . . 3 (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
15 fsumcncntop.4 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 fsumcncntop.3 . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
1716cntoptopon 14711 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
1817a1i 9 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
19 0cnd 8014 . . . 4 (𝜑 → 0 ∈ ℂ)
2015, 18, 19cnmptc 14461 . . 3 (𝜑 → (𝑥𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾))
2114, 20eqeltrid 2280 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
22 simplrr 536 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑧 ∈ (𝐴𝑦))
2322eldifbd 3166 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → ¬ 𝑧𝑦)
24 disjsn 3681 . . . . . . . . . 10 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
2523, 24sylibr 134 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∩ {𝑧}) = ∅)
26 eqidd 2194 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
27 simpllr 534 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑦 ∈ Fin)
28 unsnfi 6977 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ 𝑧 ∈ (𝐴𝑦) ∧ ¬ 𝑧𝑦) → (𝑦 ∪ {𝑧}) ∈ Fin)
2927, 22, 23, 28syl3anc 1249 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∪ {𝑧}) ∈ Fin)
30 simp-4l 541 . . . . . . . . . 10 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
31 simplrl 535 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑦𝐴)
3222eldifad 3165 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑧𝐴)
3332snssd 3764 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → {𝑧} ⊆ 𝐴)
3431, 33unssd 3336 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3534sselda 3180 . . . . . . . . . 10 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
36 simplr 528 . . . . . . . . . 10 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥𝑋)
3715adantr 276 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
3817a1i 9 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
39 fsumcncntop.6 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
40 cnf2 14384 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
4137, 38, 39, 40syl3anc 1249 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
42 eqid 2193 . . . . . . . . . . . . . 14 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
4342fmpt 5709 . . . . . . . . . . . . 13 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
4441, 43sylibr 134 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
45 rsp 2541 . . . . . . . . . . . 12 (∀𝑥𝑋 𝐵 ∈ ℂ → (𝑥𝑋𝐵 ∈ ℂ))
4644, 45syl 14 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℂ))
4746imp 124 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
4830, 35, 36, 47syl21anc 1248 . . . . . . . . 9 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
4925, 26, 29, 48fsumsplit 11553 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
50 simplll 533 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝜑)
51 simpr 110 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑥𝑋)
5246impancom 260 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑘𝐴𝐵 ∈ ℂ))
5352ralrimiv 2566 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
5450, 51, 53syl2anc 411 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
55 nfcsb1v 3114 . . . . . . . . . . . . 13 𝑘𝑧 / 𝑘𝐵
5655nfel1 2347 . . . . . . . . . . . 12 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
57 csbeq1a 3090 . . . . . . . . . . . . 13 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
5857eleq1d 2262 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
5956, 58rspc 2859 . . . . . . . . . . 11 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
6032, 54, 59sylc 62 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑧 / 𝑘𝐵 ∈ ℂ)
61 sumsns 11561 . . . . . . . . . 10 ((𝑧 ∈ (𝐴𝑦) ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
6222, 60, 61syl2anc 411 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
6362oveq2d 5935 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
6449, 63eqtrd 2226 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
6564mpteq2dva 4120 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
6665adantr 276 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
67 nfcv 2336 . . . . . 6 𝑤𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)
68 nfcv 2336 . . . . . . . 8 𝑥𝑦
69 nfcsb1v 3114 . . . . . . . 8 𝑥𝑤 / 𝑥𝐵
7068, 69nfsum 11503 . . . . . . 7 𝑥Σ𝑘𝑦 𝑤 / 𝑥𝐵
71 nfcv 2336 . . . . . . 7 𝑥 +
72 nfcv 2336 . . . . . . . 8 𝑥𝑧
7372, 69nfcsb 3119 . . . . . . 7 𝑥𝑧 / 𝑘𝑤 / 𝑥𝐵
7470, 71, 73nfov 5949 . . . . . 6 𝑥𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)
75 csbeq1a 3090 . . . . . . . 8 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
7675sumeq2ad 11515 . . . . . . 7 (𝑥 = 𝑤 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑦 𝑤 / 𝑥𝐵)
7775csbeq2dv 3107 . . . . . . 7 (𝑥 = 𝑤𝑧 / 𝑘𝐵 = 𝑧 / 𝑘𝑤 / 𝑥𝐵)
7876, 77oveq12d 5937 . . . . . 6 (𝑥 = 𝑤 → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
7967, 74, 78cbvmpt 4125 . . . . 5 (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
8066, 79eqtrdi 2242 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)))
8115ad3antrrr 492 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
82 nfcv 2336 . . . . . . 7 𝑤Σ𝑘𝑦 𝐵
8382, 70, 76cbvmpt 4125 . . . . . 6 (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) = (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵)
84 simpr 110 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))
8583, 84eqeltrrid 2281 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
86 nfcv 2336 . . . . . . 7 𝑤𝑧 / 𝑘𝐵
8786, 73, 77cbvmpt 4125 . . . . . 6 (𝑥𝑋𝑧 / 𝑘𝐵) = (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵)
88 simprr 531 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
8988eldifad 3165 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
9089adantr 276 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑧𝐴)
9139ralrimiva 2567 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
9291ad3antrrr 492 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
93 nfcv 2336 . . . . . . . . . 10 𝑘𝑋
9493, 55nfmpt 4122 . . . . . . . . 9 𝑘(𝑥𝑋𝑧 / 𝑘𝐵)
9594nfel1 2347 . . . . . . . 8 𝑘(𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
9657mpteq2dv 4121 . . . . . . . . 9 (𝑘 = 𝑧 → (𝑥𝑋𝐵) = (𝑥𝑋𝑧 / 𝑘𝐵))
9796eleq1d 2262 . . . . . . . 8 (𝑘 = 𝑧 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
9895, 97rspc 2859 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
9990, 92, 98sylc 62 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
10087, 99eqeltrrid 2281 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
10116addcncntop 14741 . . . . . 6 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
102101a1i 9 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
10381, 85, 100, 102cnmpt12f 14465 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
10480, 103eqeltrd 2270 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))
105104ex 115 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
106 fsumcncntop.5 . 2 (𝜑𝐴 ∈ Fin)
1073, 6, 9, 12, 21, 105, 106findcard2sd 6950 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2164  wral 2472  csb 3081  cdif 3151  cun 3152  cin 3153  wss 3154  c0 3447  {csn 3619  cmpt 4091  ccom 4664  wf 5251  cfv 5255  (class class class)co 5919  Fincfn 6796  cc 7872  0cc0 7874   + caddc 7877  cmin 8192  abscabs 11144  Σcsu 11499  MetOpencmopn 14040  TopOnctopon 14189   Cn ccn 14364   ×t ctx 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994  ax-addf 7996
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-map 6706  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-xneg 9841  df-xadd 9842  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-topgen 12874  df-psmet 14042  df-xmet 14043  df-met 14044  df-bl 14045  df-mopn 14046  df-top 14177  df-topon 14190  df-bases 14222  df-cn 14367  df-cnp 14368  df-tx 14432
This theorem is referenced by:  fsumcn  14747
  Copyright terms: Public domain W3C validator