ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcncntop GIF version

Theorem fsumcncntop 12725
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcncntop.3 𝐾 = (MetOpen‘(abs ∘ − ))
fsumcn.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
fsumcn.5 (𝜑𝐴 ∈ Fin)
fsumcn.6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fsumcncntop (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)

Proof of Theorem fsumcncntop
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11124 . . . 4 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21mpteq2dv 4019 . . 3 (𝑤 = ∅ → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵))
32eleq1d 2208 . 2 (𝑤 = ∅ → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
4 sumeq1 11124 . . . 4 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
54mpteq2dv 4019 . . 3 (𝑤 = 𝑦 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵))
65eleq1d 2208 . 2 (𝑤 = 𝑦 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
7 sumeq1 11124 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
87mpteq2dv 4019 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
98eleq1d 2208 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
10 sumeq1 11124 . . . 4 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
1110mpteq2dv 4019 . . 3 (𝑤 = 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
1211eleq1d 2208 . 2 (𝑤 = 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
13 sum0 11157 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
1413mpteq2i 4015 . . 3 (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
15 fsumcn.4 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 fsumcncntop.3 . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
1716cntoptopon 12701 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
1817a1i 9 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
19 0cnd 7759 . . . 4 (𝜑 → 0 ∈ ℂ)
2015, 18, 19cnmptc 12451 . . 3 (𝜑 → (𝑥𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾))
2114, 20eqeltrid 2226 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
22 simplrr 525 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑧 ∈ (𝐴𝑦))
2322eldifbd 3083 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → ¬ 𝑧𝑦)
24 disjsn 3585 . . . . . . . . . 10 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
2523, 24sylibr 133 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∩ {𝑧}) = ∅)
26 eqidd 2140 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
27 simpllr 523 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑦 ∈ Fin)
28 unsnfi 6807 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ 𝑧 ∈ (𝐴𝑦) ∧ ¬ 𝑧𝑦) → (𝑦 ∪ {𝑧}) ∈ Fin)
2927, 22, 23, 28syl3anc 1216 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∪ {𝑧}) ∈ Fin)
30 simp-4l 530 . . . . . . . . . 10 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
31 simplrl 524 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑦𝐴)
3222eldifad 3082 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑧𝐴)
3332snssd 3665 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → {𝑧} ⊆ 𝐴)
3431, 33unssd 3252 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3534sselda 3097 . . . . . . . . . 10 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
36 simplr 519 . . . . . . . . . 10 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥𝑋)
3715adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
3817a1i 9 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
39 fsumcn.6 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
40 cnf2 12374 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
4137, 38, 39, 40syl3anc 1216 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
42 eqid 2139 . . . . . . . . . . . . . 14 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
4342fmpt 5570 . . . . . . . . . . . . 13 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
4441, 43sylibr 133 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
45 rsp 2480 . . . . . . . . . . . 12 (∀𝑥𝑋 𝐵 ∈ ℂ → (𝑥𝑋𝐵 ∈ ℂ))
4644, 45syl 14 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℂ))
4746imp 123 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
4830, 35, 36, 47syl21anc 1215 . . . . . . . . 9 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
4925, 26, 29, 48fsumsplit 11176 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
50 simplll 522 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝜑)
51 simpr 109 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑥𝑋)
5246impancom 258 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑘𝐴𝐵 ∈ ℂ))
5352ralrimiv 2504 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
5450, 51, 53syl2anc 408 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
55 nfcsb1v 3035 . . . . . . . . . . . . 13 𝑘𝑧 / 𝑘𝐵
5655nfel1 2292 . . . . . . . . . . . 12 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
57 csbeq1a 3012 . . . . . . . . . . . . 13 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
5857eleq1d 2208 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
5956, 58rspc 2783 . . . . . . . . . . 11 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
6032, 54, 59sylc 62 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑧 / 𝑘𝐵 ∈ ℂ)
61 sumsns 11184 . . . . . . . . . 10 ((𝑧 ∈ (𝐴𝑦) ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
6222, 60, 61syl2anc 408 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
6362oveq2d 5790 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
6449, 63eqtrd 2172 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
6564mpteq2dva 4018 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
6665adantr 274 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
67 nfcv 2281 . . . . . 6 𝑤𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)
68 nfcv 2281 . . . . . . . 8 𝑥𝑦
69 nfcsb1v 3035 . . . . . . . 8 𝑥𝑤 / 𝑥𝐵
7068, 69nfsum 11126 . . . . . . 7 𝑥Σ𝑘𝑦 𝑤 / 𝑥𝐵
71 nfcv 2281 . . . . . . 7 𝑥 +
72 nfcv 2281 . . . . . . . 8 𝑥𝑧
7372, 69nfcsb 3037 . . . . . . 7 𝑥𝑧 / 𝑘𝑤 / 𝑥𝐵
7470, 71, 73nfov 5801 . . . . . 6 𝑥𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)
75 csbeq1a 3012 . . . . . . . 8 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
7675sumeq2ad 11138 . . . . . . 7 (𝑥 = 𝑤 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑦 𝑤 / 𝑥𝐵)
7775csbeq2dv 3028 . . . . . . 7 (𝑥 = 𝑤𝑧 / 𝑘𝐵 = 𝑧 / 𝑘𝑤 / 𝑥𝐵)
7876, 77oveq12d 5792 . . . . . 6 (𝑥 = 𝑤 → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
7967, 74, 78cbvmpt 4023 . . . . 5 (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
8066, 79syl6eq 2188 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)))
8115ad3antrrr 483 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
82 nfcv 2281 . . . . . . 7 𝑤Σ𝑘𝑦 𝐵
8382, 70, 76cbvmpt 4023 . . . . . 6 (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) = (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵)
84 simpr 109 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))
8583, 84eqeltrrid 2227 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
86 nfcv 2281 . . . . . . 7 𝑤𝑧 / 𝑘𝐵
8786, 73, 77cbvmpt 4023 . . . . . 6 (𝑥𝑋𝑧 / 𝑘𝐵) = (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵)
88 simprr 521 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
8988eldifad 3082 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
9089adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑧𝐴)
9139ralrimiva 2505 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
9291ad3antrrr 483 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
93 nfcv 2281 . . . . . . . . . 10 𝑘𝑋
9493, 55nfmpt 4020 . . . . . . . . 9 𝑘(𝑥𝑋𝑧 / 𝑘𝐵)
9594nfel1 2292 . . . . . . . 8 𝑘(𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
9657mpteq2dv 4019 . . . . . . . . 9 (𝑘 = 𝑧 → (𝑥𝑋𝐵) = (𝑥𝑋𝑧 / 𝑘𝐵))
9796eleq1d 2208 . . . . . . . 8 (𝑘 = 𝑧 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
9895, 97rspc 2783 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
9990, 92, 98sylc 62 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
10087, 99eqeltrrid 2227 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
10116addcncntop 12721 . . . . . 6 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
102101a1i 9 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
10381, 85, 100, 102cnmpt12f 12455 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
10480, 103eqeltrd 2216 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))
105104ex 114 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
106 fsumcn.5 . 2 (𝜑𝐴 ∈ Fin)
1073, 6, 9, 12, 21, 105, 106findcard2sd 6786 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  csb 3003  cdif 3068  cun 3069  cin 3070  wss 3071  c0 3363  {csn 3527  cmpt 3989  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  Fincfn 6634  cc 7618  0cc0 7620   + caddc 7623  cmin 7933  abscabs 10769  Σcsu 11122  MetOpencmopn 12154  TopOnctopon 12177   Cn ccn 12354   ×t ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-addf 7742
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357  df-cnp 12358  df-tx 12422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator