ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcncntop GIF version

Theorem fsumcncntop 13350
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcncntop.3 𝐾 = (MetOpen‘(abs ∘ − ))
fsumcn.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
fsumcn.5 (𝜑𝐴 ∈ Fin)
fsumcn.6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fsumcncntop (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)

Proof of Theorem fsumcncntop
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11318 . . . 4 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21mpteq2dv 4080 . . 3 (𝑤 = ∅ → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵))
32eleq1d 2239 . 2 (𝑤 = ∅ → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
4 sumeq1 11318 . . . 4 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
54mpteq2dv 4080 . . 3 (𝑤 = 𝑦 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵))
65eleq1d 2239 . 2 (𝑤 = 𝑦 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
7 sumeq1 11318 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
87mpteq2dv 4080 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
98eleq1d 2239 . 2 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
10 sumeq1 11318 . . . 4 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
1110mpteq2dv 4080 . . 3 (𝑤 = 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
1211eleq1d 2239 . 2 (𝑤 = 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
13 sum0 11351 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
1413mpteq2i 4076 . . 3 (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
15 fsumcn.4 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 fsumcncntop.3 . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
1716cntoptopon 13326 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
1817a1i 9 . . . 4 (𝜑𝐾 ∈ (TopOn‘ℂ))
19 0cnd 7913 . . . 4 (𝜑 → 0 ∈ ℂ)
2015, 18, 19cnmptc 13076 . . 3 (𝜑 → (𝑥𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾))
2114, 20eqeltrid 2257 . 2 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
22 simplrr 531 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑧 ∈ (𝐴𝑦))
2322eldifbd 3133 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → ¬ 𝑧𝑦)
24 disjsn 3645 . . . . . . . . . 10 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
2523, 24sylibr 133 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∩ {𝑧}) = ∅)
26 eqidd 2171 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
27 simpllr 529 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑦 ∈ Fin)
28 unsnfi 6896 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ 𝑧 ∈ (𝐴𝑦) ∧ ¬ 𝑧𝑦) → (𝑦 ∪ {𝑧}) ∈ Fin)
2927, 22, 23, 28syl3anc 1233 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∪ {𝑧}) ∈ Fin)
30 simp-4l 536 . . . . . . . . . 10 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
31 simplrl 530 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑦𝐴)
3222eldifad 3132 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑧𝐴)
3332snssd 3725 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → {𝑧} ⊆ 𝐴)
3431, 33unssd 3303 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
3534sselda 3147 . . . . . . . . . 10 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
36 simplr 525 . . . . . . . . . 10 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥𝑋)
3715adantr 274 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
3817a1i 9 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
39 fsumcn.6 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
40 cnf2 12999 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
4137, 38, 39, 40syl3anc 1233 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
42 eqid 2170 . . . . . . . . . . . . . 14 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
4342fmpt 5646 . . . . . . . . . . . . 13 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
4441, 43sylibr 133 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
45 rsp 2517 . . . . . . . . . . . 12 (∀𝑥𝑋 𝐵 ∈ ℂ → (𝑥𝑋𝐵 ∈ ℂ))
4644, 45syl 14 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℂ))
4746imp 123 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
4830, 35, 36, 47syl21anc 1232 . . . . . . . . 9 (((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
4925, 26, 29, 48fsumsplit 11370 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
50 simplll 528 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝜑)
51 simpr 109 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑥𝑋)
5246impancom 258 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑘𝐴𝐵 ∈ ℂ))
5352ralrimiv 2542 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
5450, 51, 53syl2anc 409 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
55 nfcsb1v 3082 . . . . . . . . . . . . 13 𝑘𝑧 / 𝑘𝐵
5655nfel1 2323 . . . . . . . . . . . 12 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
57 csbeq1a 3058 . . . . . . . . . . . . 13 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
5857eleq1d 2239 . . . . . . . . . . . 12 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
5956, 58rspc 2828 . . . . . . . . . . 11 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
6032, 54, 59sylc 62 . . . . . . . . . 10 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → 𝑧 / 𝑘𝐵 ∈ ℂ)
61 sumsns 11378 . . . . . . . . . 10 ((𝑧 ∈ (𝐴𝑦) ∧ 𝑧 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
6222, 60, 61syl2anc 409 . . . . . . . . 9 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
6362oveq2d 5869 . . . . . . . 8 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
6449, 63eqtrd 2203 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
6564mpteq2dva 4079 . . . . . 6 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
6665adantr 274 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
67 nfcv 2312 . . . . . 6 𝑤𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)
68 nfcv 2312 . . . . . . . 8 𝑥𝑦
69 nfcsb1v 3082 . . . . . . . 8 𝑥𝑤 / 𝑥𝐵
7068, 69nfsum 11320 . . . . . . 7 𝑥Σ𝑘𝑦 𝑤 / 𝑥𝐵
71 nfcv 2312 . . . . . . 7 𝑥 +
72 nfcv 2312 . . . . . . . 8 𝑥𝑧
7372, 69nfcsb 3086 . . . . . . 7 𝑥𝑧 / 𝑘𝑤 / 𝑥𝐵
7470, 71, 73nfov 5883 . . . . . 6 𝑥𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)
75 csbeq1a 3058 . . . . . . . 8 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
7675sumeq2ad 11332 . . . . . . 7 (𝑥 = 𝑤 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑦 𝑤 / 𝑥𝐵)
7775csbeq2dv 3075 . . . . . . 7 (𝑥 = 𝑤𝑧 / 𝑘𝐵 = 𝑧 / 𝑘𝑤 / 𝑥𝐵)
7876, 77oveq12d 5871 . . . . . 6 (𝑥 = 𝑤 → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
7967, 74, 78cbvmpt 4084 . . . . 5 (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
8066, 79eqtrdi 2219 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)))
8115ad3antrrr 489 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ (TopOn‘𝑋))
82 nfcv 2312 . . . . . . 7 𝑤Σ𝑘𝑦 𝐵
8382, 70, 76cbvmpt 4084 . . . . . 6 (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) = (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵)
84 simpr 109 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))
8583, 84eqeltrrid 2258 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
86 nfcv 2312 . . . . . . 7 𝑤𝑧 / 𝑘𝐵
8786, 73, 77cbvmpt 4084 . . . . . 6 (𝑥𝑋𝑧 / 𝑘𝐵) = (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵)
88 simprr 527 . . . . . . . . 9 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧 ∈ (𝐴𝑦))
8988eldifad 3132 . . . . . . . 8 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → 𝑧𝐴)
9089adantr 274 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → 𝑧𝐴)
9139ralrimiva 2543 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
9291ad3antrrr 489 . . . . . . 7 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
93 nfcv 2312 . . . . . . . . . 10 𝑘𝑋
9493, 55nfmpt 4081 . . . . . . . . 9 𝑘(𝑥𝑋𝑧 / 𝑘𝐵)
9594nfel1 2323 . . . . . . . 8 𝑘(𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
9657mpteq2dv 4080 . . . . . . . . 9 (𝑘 = 𝑧 → (𝑥𝑋𝐵) = (𝑥𝑋𝑧 / 𝑘𝐵))
9796eleq1d 2239 . . . . . . . 8 (𝑘 = 𝑧 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
9895, 97rspc 2828 . . . . . . 7 (𝑧𝐴 → (∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
9990, 92, 98sylc 62 . . . . . 6 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
10087, 99eqeltrrid 2258 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
10116addcncntop 13346 . . . . . 6 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
102101a1i 9 . . . . 5 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
10381, 85, 100, 102cnmpt12f 13080 . . . 4 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
10480, 103eqeltrd 2247 . . 3 ((((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))
105104ex 114 . 2 (((𝜑𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
106 fsumcn.5 . 2 (𝜑𝐴 ∈ Fin)
1073, 6, 9, 12, 21, 105, 106findcard2sd 6870 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  csb 3049  cdif 3118  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583  cmpt 4050  ccom 4615  wf 5194  cfv 5198  (class class class)co 5853  Fincfn 6718  cc 7772  0cc0 7774   + caddc 7777  cmin 8090  abscabs 10961  Σcsu 11316  MetOpencmopn 12779  TopOnctopon 12802   Cn ccn 12979   ×t ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-addf 7896
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-map 6628  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-cn 12982  df-cnp 12983  df-tx 13047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator