ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummod GIF version

Theorem modfsummod 11466
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Hypotheses
Ref Expression
modfsummod.n (𝜑𝑁 ∈ ℕ)
modfsummod.1 (𝜑𝐴 ∈ Fin)
modfsummod.2 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
Assertion
Ref Expression
modfsummod (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem modfsummod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modfsummod.2 . 2 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
2 modfsummod.n . 2 (𝜑𝑁 ∈ ℕ)
3 modfsummod.1 . . 3 (𝜑𝐴 ∈ Fin)
4 raleq 2673 . . . . . 6 (𝑥 = ∅ → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ ∅ 𝐵 ∈ ℤ))
54anbi1d 465 . . . . 5 (𝑥 = ∅ → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
6 sumeq1 11363 . . . . . . 7 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
76oveq1d 5890 . . . . . 6 (𝑥 = ∅ → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁))
8 sumeq1 11363 . . . . . . 7 (𝑥 = ∅ → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ ∅ (𝐵 mod 𝑁))
98oveq1d 5890 . . . . . 6 (𝑥 = ∅ → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
107, 9eqeq12d 2192 . . . . 5 (𝑥 = ∅ → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁)))
115, 10imbi12d 234 . . . 4 (𝑥 = ∅ → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))))
12 raleq 2673 . . . . . 6 (𝑥 = 𝑦 → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘𝑦 𝐵 ∈ ℤ))
1312anbi1d 465 . . . . 5 (𝑥 = 𝑦 → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
14 sumeq1 11363 . . . . . . 7 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
1514oveq1d 5890 . . . . . 6 (𝑥 = 𝑦 → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑦 𝐵 mod 𝑁))
16 sumeq1 11363 . . . . . . 7 (𝑥 = 𝑦 → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘𝑦 (𝐵 mod 𝑁))
1716oveq1d 5890 . . . . . 6 (𝑥 = 𝑦 → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))
1815, 17eqeq12d 2192 . . . . 5 (𝑥 = 𝑦 → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)))
1913, 18imbi12d 234 . . . 4 (𝑥 = 𝑦 → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))))
20 raleq 2673 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ))
2120anbi1d 465 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
22 sumeq1 11363 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
2322oveq1d 5890 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁))
24 sumeq1 11363 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁))
2524oveq1d 5890 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
2623, 25eqeq12d 2192 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
2721, 26imbi12d 234 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
28 raleq 2673 . . . . . 6 (𝑥 = 𝐴 → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘𝐴 𝐵 ∈ ℤ))
2928anbi1d 465 . . . . 5 (𝑥 = 𝐴 → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
30 sumeq1 11363 . . . . . . 7 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
3130oveq1d 5890 . . . . . 6 (𝑥 = 𝐴 → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝐴 𝐵 mod 𝑁))
32 sumeq1 11363 . . . . . . 7 (𝑥 = 𝐴 → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘𝐴 (𝐵 mod 𝑁))
3332oveq1d 5890 . . . . . 6 (𝑥 = 𝐴 → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
3431, 33eqeq12d 2192 . . . . 5 (𝑥 = 𝐴 → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
3529, 34imbi12d 234 . . . 4 (𝑥 = 𝐴 → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))))
36 sum0 11396 . . . . . . 7 Σ𝑘 ∈ ∅ 𝐵 = 0
3736oveq1i 5885 . . . . . 6 𝑘 ∈ ∅ 𝐵 mod 𝑁) = (0 mod 𝑁)
38 sum0 11396 . . . . . . . 8 Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) = 0
3938a1i 9 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) = 0)
4039oveq1d 5890 . . . . . 6 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁) = (0 mod 𝑁))
4137, 40eqtr4id 2229 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
4241adantl 277 . . . 4 ((∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
43 simp-4l 541 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → 𝑦 ∈ Fin)
44 simprr 531 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈ ℕ)
4544ad2antrr 488 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → 𝑁 ∈ ℕ)
46 simprl 529 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ∀𝑘𝑦 𝐵 ∈ ℤ)
4746ad2antrr 488 . . . . . . . . . . 11 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘𝑦 𝐵 ∈ ℤ)
48 simplr 528 . . . . . . . . . . 11 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ)
49 ralun 3318 . . . . . . . . . . 11 ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
5047, 48, 49syl2anc 411 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
51 simplr 528 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ¬ 𝑧𝑦)
5251ad2antrr 488 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ¬ 𝑧𝑦)
53 simpr 110 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))
5443, 45, 50, 52, 53modfsummodlemstep 11465 . . . . . . . . 9 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
5554exp31 364 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
5655com23 78 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
5756ex 115 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))))
5857a2d 26 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))))
59 ralunb 3317 . . . . . . . 8 (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
6059anbi1i 458 . . . . . . 7 ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ))
6160imbi1i 238 . . . . . 6 (((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
62 an32 562 . . . . . . 7 (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
6362imbi1i 238 . . . . . 6 ((((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
64 impexp 263 . . . . . 6 ((((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6561, 63, 643bitri 206 . . . . 5 (((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6658, 65imbitrrdi 162 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6711, 19, 27, 35, 42, 66findcard2s 6890 . . 3 (𝐴 ∈ Fin → ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
683, 67syl 14 . 2 (𝜑 → ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
691, 2, 68mp2and 433 1 (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  cun 3128  c0 3423  {csn 3593  (class class class)co 5875  Fincfn 6740  0cc0 7811  cn 8919  cz 9253   mod cmo 10322  Σcsu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator