ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummod GIF version

Theorem modfsummod 11399
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Hypotheses
Ref Expression
modfsummod.n (𝜑𝑁 ∈ ℕ)
modfsummod.1 (𝜑𝐴 ∈ Fin)
modfsummod.2 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
Assertion
Ref Expression
modfsummod (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem modfsummod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modfsummod.2 . 2 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
2 modfsummod.n . 2 (𝜑𝑁 ∈ ℕ)
3 modfsummod.1 . . 3 (𝜑𝐴 ∈ Fin)
4 raleq 2661 . . . . . 6 (𝑥 = ∅ → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ ∅ 𝐵 ∈ ℤ))
54anbi1d 461 . . . . 5 (𝑥 = ∅ → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
6 sumeq1 11296 . . . . . . 7 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
76oveq1d 5857 . . . . . 6 (𝑥 = ∅ → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁))
8 sumeq1 11296 . . . . . . 7 (𝑥 = ∅ → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ ∅ (𝐵 mod 𝑁))
98oveq1d 5857 . . . . . 6 (𝑥 = ∅ → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
107, 9eqeq12d 2180 . . . . 5 (𝑥 = ∅ → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁)))
115, 10imbi12d 233 . . . 4 (𝑥 = ∅ → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))))
12 raleq 2661 . . . . . 6 (𝑥 = 𝑦 → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘𝑦 𝐵 ∈ ℤ))
1312anbi1d 461 . . . . 5 (𝑥 = 𝑦 → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
14 sumeq1 11296 . . . . . . 7 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
1514oveq1d 5857 . . . . . 6 (𝑥 = 𝑦 → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑦 𝐵 mod 𝑁))
16 sumeq1 11296 . . . . . . 7 (𝑥 = 𝑦 → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘𝑦 (𝐵 mod 𝑁))
1716oveq1d 5857 . . . . . 6 (𝑥 = 𝑦 → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))
1815, 17eqeq12d 2180 . . . . 5 (𝑥 = 𝑦 → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)))
1913, 18imbi12d 233 . . . 4 (𝑥 = 𝑦 → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))))
20 raleq 2661 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ))
2120anbi1d 461 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
22 sumeq1 11296 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
2322oveq1d 5857 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁))
24 sumeq1 11296 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁))
2524oveq1d 5857 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
2623, 25eqeq12d 2180 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
2721, 26imbi12d 233 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
28 raleq 2661 . . . . . 6 (𝑥 = 𝐴 → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘𝐴 𝐵 ∈ ℤ))
2928anbi1d 461 . . . . 5 (𝑥 = 𝐴 → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
30 sumeq1 11296 . . . . . . 7 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
3130oveq1d 5857 . . . . . 6 (𝑥 = 𝐴 → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝐴 𝐵 mod 𝑁))
32 sumeq1 11296 . . . . . . 7 (𝑥 = 𝐴 → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘𝐴 (𝐵 mod 𝑁))
3332oveq1d 5857 . . . . . 6 (𝑥 = 𝐴 → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
3431, 33eqeq12d 2180 . . . . 5 (𝑥 = 𝐴 → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
3529, 34imbi12d 233 . . . 4 (𝑥 = 𝐴 → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))))
36 sum0 11329 . . . . . . 7 Σ𝑘 ∈ ∅ 𝐵 = 0
3736oveq1i 5852 . . . . . 6 𝑘 ∈ ∅ 𝐵 mod 𝑁) = (0 mod 𝑁)
38 sum0 11329 . . . . . . . 8 Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) = 0
3938a1i 9 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) = 0)
4039oveq1d 5857 . . . . . 6 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁) = (0 mod 𝑁))
4137, 40eqtr4id 2218 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
4241adantl 275 . . . 4 ((∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
43 simp-4l 531 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → 𝑦 ∈ Fin)
44 simprr 522 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈ ℕ)
4544ad2antrr 480 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → 𝑁 ∈ ℕ)
46 simprl 521 . . . . . . . . . . . 12 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ∀𝑘𝑦 𝐵 ∈ ℤ)
4746ad2antrr 480 . . . . . . . . . . 11 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘𝑦 𝐵 ∈ ℤ)
48 simplr 520 . . . . . . . . . . 11 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ)
49 ralun 3304 . . . . . . . . . . 11 ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
5047, 48, 49syl2anc 409 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
51 simplr 520 . . . . . . . . . . 11 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ¬ 𝑧𝑦)
5251ad2antrr 480 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ¬ 𝑧𝑦)
53 simpr 109 . . . . . . . . . 10 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))
5443, 45, 50, 52, 53modfsummodlemstep 11398 . . . . . . . . 9 (((((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
5554exp31 362 . . . . . . . 8 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
5655com23 78 . . . . . . 7 (((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
5756ex 114 . . . . . 6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))))
5857a2d 26 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))))
59 ralunb 3303 . . . . . . . 8 (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
6059anbi1i 454 . . . . . . 7 ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ))
6160imbi1i 237 . . . . . 6 (((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
62 an32 552 . . . . . . 7 (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
6362imbi1i 237 . . . . . 6 ((((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
64 impexp 261 . . . . . 6 ((((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6561, 63, 643bitri 205 . . . . 5 (((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6658, 65syl6ibr 161 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6711, 19, 27, 35, 42, 66findcard2s 6856 . . 3 (𝐴 ∈ Fin → ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
683, 67syl 14 . 2 (𝜑 → ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
691, 2, 68mp2and 430 1 (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  cun 3114  c0 3409  {csn 3576  (class class class)co 5842  Fincfn 6706  0cc0 7753  cn 8857  cz 9191   mod cmo 10257  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator