| Step | Hyp | Ref
| Expression |
| 1 | | modfsummod.2 |
. 2
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) |
| 2 | | modfsummod.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 3 | | modfsummod.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 4 | | raleq 2693 |
. . . . . 6
⊢ (𝑥 = ∅ → (∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ ∅ 𝐵 ∈
ℤ)) |
| 5 | 4 | anbi1d 465 |
. . . . 5
⊢ (𝑥 = ∅ →
((∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈
ℕ))) |
| 6 | | sumeq1 11520 |
. . . . . . 7
⊢ (𝑥 = ∅ → Σ𝑘 ∈ 𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
| 7 | 6 | oveq1d 5937 |
. . . . . 6
⊢ (𝑥 = ∅ → (Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁)) |
| 8 | | sumeq1 11520 |
. . . . . . 7
⊢ (𝑥 = ∅ → Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ ∅ (𝐵 mod 𝑁)) |
| 9 | 8 | oveq1d 5937 |
. . . . . 6
⊢ (𝑥 = ∅ → (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁)) |
| 10 | 7, 9 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = ∅ → ((Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))) |
| 11 | 5, 10 | imbi12d 234 |
. . . 4
⊢ (𝑥 = ∅ →
(((∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁)))) |
| 12 | | raleq 2693 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ)) |
| 13 | 12 | anbi1d 465 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ))) |
| 14 | | sumeq1 11520 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → Σ𝑘 ∈ 𝑥 𝐵 = Σ𝑘 ∈ 𝑦 𝐵) |
| 15 | 14 | oveq1d 5937 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁)) |
| 16 | | sumeq1 11520 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁)) |
| 17 | 16 | oveq1d 5937 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) |
| 18 | 15, 17 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁))) |
| 19 | 13, 18 | imbi12d 234 |
. . . 4
⊢ (𝑥 = 𝑦 → (((∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)))) |
| 20 | | raleq 2693 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)) |
| 21 | 20 | anbi1d 465 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ))) |
| 22 | | sumeq1 11520 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
| 23 | 22 | oveq1d 5937 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁)) |
| 24 | | sumeq1 11520 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁)) |
| 25 | 24 | oveq1d 5937 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) |
| 26 | 23, 25 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))) |
| 27 | 21, 26 | imbi12d 234 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (((∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))) |
| 28 | | raleq 2693 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ)) |
| 29 | 28 | anbi1d 465 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ))) |
| 30 | | sumeq1 11520 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ 𝑥 𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
| 31 | 30 | oveq1d 5937 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁)) |
| 32 | | sumeq1 11520 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁)) |
| 33 | 32 | oveq1d 5937 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) |
| 34 | 31, 33 | eqeq12d 2211 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁))) |
| 35 | 29, 34 | imbi12d 234 |
. . . 4
⊢ (𝑥 = 𝐴 → (((∀𝑘 ∈ 𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)))) |
| 36 | | sum0 11553 |
. . . . . . 7
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
| 37 | 36 | oveq1i 5932 |
. . . . . 6
⊢
(Σ𝑘 ∈
∅ 𝐵 mod 𝑁) = (0 mod 𝑁) |
| 38 | | sum0 11553 |
. . . . . . . 8
⊢
Σ𝑘 ∈
∅ (𝐵 mod 𝑁) = 0 |
| 39 | 38 | a1i 9 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ ∅
(𝐵 mod 𝑁) = 0) |
| 40 | 39 | oveq1d 5937 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(Σ𝑘 ∈ ∅
(𝐵 mod 𝑁) mod 𝑁) = (0 mod 𝑁)) |
| 41 | 37, 40 | eqtr4id 2248 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(Σ𝑘 ∈ ∅
𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁)) |
| 42 | 41 | adantl 277 |
. . . 4
⊢
((∀𝑘 ∈
∅ 𝐵 ∈ ℤ
∧ 𝑁 ∈ ℕ)
→ (Σ𝑘 ∈
∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁)) |
| 43 | | simp-4l 541 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈ Fin
∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → 𝑦 ∈ Fin) |
| 44 | | simprr 531 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈ ℕ) |
| 45 | 44 | ad2antrr 488 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈ Fin
∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → 𝑁 ∈ ℕ) |
| 46 | | simprl 529 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ) |
| 47 | 46 | ad2antrr 488 |
. . . . . . . . . . 11
⊢
(((((𝑦 ∈ Fin
∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ) |
| 48 | | simplr 528 |
. . . . . . . . . . 11
⊢
(((((𝑦 ∈ Fin
∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) |
| 49 | | ralun 3345 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) |
| 50 | 47, 48, 49 | syl2anc 411 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈ Fin
∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) |
| 51 | | simplr 528 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ¬ 𝑧 ∈ 𝑦) |
| 52 | 51 | ad2antrr 488 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈ Fin
∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ¬ 𝑧 ∈ 𝑦) |
| 53 | | simpr 110 |
. . . . . . . . . 10
⊢
(((((𝑦 ∈ Fin
∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) |
| 54 | 43, 45, 50, 52, 53 | modfsummodlemstep 11622 |
. . . . . . . . 9
⊢
(((((𝑦 ∈ Fin
∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) |
| 55 | 54 | exp31 364 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → ((Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))) |
| 56 | 55 | com23 78 |
. . . . . . 7
⊢ (((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) ∧ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ((Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))) |
| 57 | 56 | ex 115 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))) |
| 58 | 57 | a2d 26 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))) |
| 59 | | ralunb 3344 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ)) |
| 60 | 59 | anbi1i 458 |
. . . . . . 7
⊢
((∀𝑘 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ)) |
| 61 | 60 | imbi1i 238 |
. . . . . 6
⊢
(((∀𝑘 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))) |
| 62 | | an32 562 |
. . . . . . 7
⊢
(((∀𝑘 ∈
𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ)) |
| 63 | 62 | imbi1i 238 |
. . . . . 6
⊢
((((∀𝑘 ∈
𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))) |
| 64 | | impexp 263 |
. . . . . 6
⊢
((((∀𝑘 ∈
𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))) |
| 65 | 61, 63, 64 | 3bitri 206 |
. . . . 5
⊢
(((∀𝑘 ∈
(𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))) |
| 66 | 58, 65 | imbitrrdi 162 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (((∀𝑘 ∈ 𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝑦 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))) |
| 67 | 11, 19, 27, 35, 42, 66 | findcard2s 6951 |
. . 3
⊢ (𝐴 ∈ Fin →
((∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁))) |
| 68 | 3, 67 | syl 14 |
. 2
⊢ (𝜑 → ((∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁))) |
| 69 | 1, 2, 68 | mp2and 433 |
1
⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐵 mod 𝑁) = (Σ𝑘 ∈ 𝐴 (𝐵 mod 𝑁) mod 𝑁)) |