ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisol GIF version

Theorem nninfisol 7250
Description: Finite elements of are isolated. That is, given a natural number and any element of , it is decidable whether the natural number (when converted to an element of ) is equal to the given element of . Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence 𝑋 to decide whether it is equal to 𝑁 (in fact, you only need to look at two elements and 𝑁 tells you where to look).

By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7297). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)

Assertion
Ref Expression
nninfisol ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
Distinct variable groups:   𝑖,𝑁   𝑖,𝑋

Proof of Theorem nninfisol
StepHypRef Expression
1 simpllr 534 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑋 ∈ ℕ)
2 simplr 528 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → (𝑋𝑁) = ∅)
3 simplll 533 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑁 ∈ ω)
4 simpr 110 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑁 = ∅)
51, 2, 3, 4nninfisollem0 7247 . . 3 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
6 simp-4r 542 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → 𝑋 ∈ ℕ)
7 simpllr 534 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → (𝑋𝑁) = ∅)
8 simp-4l 541 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → 𝑁 ∈ ω)
9 simpr 110 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → ¬ 𝑁 = ∅)
109neqned 2384 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → 𝑁 ≠ ∅)
1110adantr 276 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → 𝑁 ≠ ∅)
12 simpr 110 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → (𝑋 𝑁) = ∅)
136, 7, 8, 11, 12nninfisollemne 7248 . . . 4 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
14 simp-4r 542 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → 𝑋 ∈ ℕ)
15 simpllr 534 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → (𝑋𝑁) = ∅)
16 simp-4l 541 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → 𝑁 ∈ ω)
1710adantr 276 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → 𝑁 ≠ ∅)
18 simpr 110 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → (𝑋 𝑁) = 1o)
1914, 15, 16, 17, 18nninfisollemeq 7249 . . . 4 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
20 nninff 7239 . . . . . . . . 9 (𝑋 ∈ ℕ𝑋:ω⟶2o)
2120adantl 277 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → 𝑋:ω⟶2o)
22 nnpredcl 4679 . . . . . . . . 9 (𝑁 ∈ ω → 𝑁 ∈ ω)
2322adantr 276 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → 𝑁 ∈ ω)
2421, 23ffvelcdmd 5729 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋 𝑁) ∈ 2o)
25 df2o3 6529 . . . . . . 7 2o = {∅, 1o}
2624, 25eleqtrdi 2299 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋 𝑁) ∈ {∅, 1o})
27 elpri 3661 . . . . . 6 ((𝑋 𝑁) ∈ {∅, 1o} → ((𝑋 𝑁) = ∅ ∨ (𝑋 𝑁) = 1o))
2826, 27syl 14 . . . . 5 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → ((𝑋 𝑁) = ∅ ∨ (𝑋 𝑁) = 1o))
2928ad2antrr 488 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → ((𝑋 𝑁) = ∅ ∨ (𝑋 𝑁) = 1o))
3013, 19, 29mpjaodan 800 . . 3 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
31 nndceq0 4674 . . . . 5 (𝑁 ∈ ω → DECID 𝑁 = ∅)
32 exmiddc 838 . . . . 5 (DECID 𝑁 = ∅ → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅))
3331, 32syl 14 . . . 4 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅))
3433ad2antrr 488 . . 3 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅))
355, 30, 34mpjaodan 800 . 2 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
36 1n0 6531 . . . . . 6 1o ≠ ∅
3736neii 2379 . . . . 5 ¬ 1o = ∅
38 simpr 110 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
3938fveq1d 5591 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = (𝑋𝑁))
40 eqid 2206 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
41 eleq1 2269 . . . . . . . . . . 11 (𝑖 = 𝑁 → (𝑖𝑁𝑁𝑁))
4241ifbid 3597 . . . . . . . . . 10 (𝑖 = 𝑁 → if(𝑖𝑁, 1o, ∅) = if(𝑁𝑁, 1o, ∅))
43 id 19 . . . . . . . . . 10 (𝑁 ∈ ω → 𝑁 ∈ ω)
44 nnord 4668 . . . . . . . . . . . . 13 (𝑁 ∈ ω → Ord 𝑁)
45 ordirr 4598 . . . . . . . . . . . . 13 (Ord 𝑁 → ¬ 𝑁𝑁)
4644, 45syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ω → ¬ 𝑁𝑁)
4746iffalsed 3585 . . . . . . . . . . 11 (𝑁 ∈ ω → if(𝑁𝑁, 1o, ∅) = ∅)
48 peano1 4650 . . . . . . . . . . 11 ∅ ∈ ω
4947, 48eqeltrdi 2297 . . . . . . . . . 10 (𝑁 ∈ ω → if(𝑁𝑁, 1o, ∅) ∈ ω)
5040, 42, 43, 49fvmptd3 5686 . . . . . . . . 9 (𝑁 ∈ ω → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = if(𝑁𝑁, 1o, ∅))
5150, 47eqtrd 2239 . . . . . . . 8 (𝑁 ∈ ω → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = ∅)
5251ad3antrrr 492 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = ∅)
53 simplr 528 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑋𝑁) = 1o)
5439, 52, 533eqtr3rd 2248 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → 1o = ∅)
5554ex 115 . . . . 5 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 → 1o = ∅))
5637, 55mtoi 666 . . . 4 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
5756olcd 736 . . 3 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋))
58 df-dc 837 . . 3 (DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋))
5957, 58sylibr 134 . 2 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
60 simpl 109 . . . . 5 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → 𝑁 ∈ ω)
6121, 60ffvelcdmd 5729 . . . 4 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋𝑁) ∈ 2o)
6261, 25eleqtrdi 2299 . . 3 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋𝑁) ∈ {∅, 1o})
63 elpri 3661 . . 3 ((𝑋𝑁) ∈ {∅, 1o} → ((𝑋𝑁) = ∅ ∨ (𝑋𝑁) = 1o))
6462, 63syl 14 . 2 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → ((𝑋𝑁) = ∅ ∨ (𝑋𝑁) = 1o))
6535, 59, 64mpjaodan 800 1 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  DECID wdc 836   = wceq 1373  wcel 2177  wne 2377  c0 3464  ifcif 3575  {cpr 3639   cuni 3856  cmpt 4113  Ord word 4417  ωcom 4646  wf 5276  cfv 5280  1oc1o 6508  2oc2o 6509  xnninf 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1o 6515  df-2o 6516  df-map 6750  df-nninf 7237
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator