ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisol GIF version

Theorem nninfisol 7192
Description: Finite elements of are isolated. That is, given a natural number and any element of , it is decidable whether the natural number (when converted to an element of ) is equal to the given element of . Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence 𝑋 to decide whether it is equal to 𝑁 (in fact, you only need to look at two elements and 𝑁 tells you where to look). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)
Assertion
Ref Expression
nninfisol ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
Distinct variable groups:   𝑖,𝑁   𝑖,𝑋

Proof of Theorem nninfisol
StepHypRef Expression
1 simpllr 534 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑋 ∈ ℕ)
2 simplr 528 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → (𝑋𝑁) = ∅)
3 simplll 533 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑁 ∈ ω)
4 simpr 110 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑁 = ∅)
51, 2, 3, 4nninfisollem0 7189 . . 3 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
6 simp-4r 542 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → 𝑋 ∈ ℕ)
7 simpllr 534 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → (𝑋𝑁) = ∅)
8 simp-4l 541 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → 𝑁 ∈ ω)
9 simpr 110 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → ¬ 𝑁 = ∅)
109neqned 2371 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → 𝑁 ≠ ∅)
1110adantr 276 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → 𝑁 ≠ ∅)
12 simpr 110 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → (𝑋 𝑁) = ∅)
136, 7, 8, 11, 12nninfisollemne 7190 . . . 4 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
14 simp-4r 542 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → 𝑋 ∈ ℕ)
15 simpllr 534 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → (𝑋𝑁) = ∅)
16 simp-4l 541 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → 𝑁 ∈ ω)
1710adantr 276 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → 𝑁 ≠ ∅)
18 simpr 110 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → (𝑋 𝑁) = 1o)
1914, 15, 16, 17, 18nninfisollemeq 7191 . . . 4 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
20 nninff 7181 . . . . . . . . 9 (𝑋 ∈ ℕ𝑋:ω⟶2o)
2120adantl 277 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → 𝑋:ω⟶2o)
22 nnpredcl 4655 . . . . . . . . 9 (𝑁 ∈ ω → 𝑁 ∈ ω)
2322adantr 276 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → 𝑁 ∈ ω)
2421, 23ffvelcdmd 5694 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋 𝑁) ∈ 2o)
25 df2o3 6483 . . . . . . 7 2o = {∅, 1o}
2624, 25eleqtrdi 2286 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋 𝑁) ∈ {∅, 1o})
27 elpri 3641 . . . . . 6 ((𝑋 𝑁) ∈ {∅, 1o} → ((𝑋 𝑁) = ∅ ∨ (𝑋 𝑁) = 1o))
2826, 27syl 14 . . . . 5 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → ((𝑋 𝑁) = ∅ ∨ (𝑋 𝑁) = 1o))
2928ad2antrr 488 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → ((𝑋 𝑁) = ∅ ∨ (𝑋 𝑁) = 1o))
3013, 19, 29mpjaodan 799 . . 3 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
31 nndceq0 4650 . . . . 5 (𝑁 ∈ ω → DECID 𝑁 = ∅)
32 exmiddc 837 . . . . 5 (DECID 𝑁 = ∅ → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅))
3331, 32syl 14 . . . 4 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅))
3433ad2antrr 488 . . 3 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅))
355, 30, 34mpjaodan 799 . 2 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
36 1n0 6485 . . . . . 6 1o ≠ ∅
3736neii 2366 . . . . 5 ¬ 1o = ∅
38 simpr 110 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
3938fveq1d 5556 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = (𝑋𝑁))
40 eqid 2193 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
41 eleq1 2256 . . . . . . . . . . 11 (𝑖 = 𝑁 → (𝑖𝑁𝑁𝑁))
4241ifbid 3578 . . . . . . . . . 10 (𝑖 = 𝑁 → if(𝑖𝑁, 1o, ∅) = if(𝑁𝑁, 1o, ∅))
43 id 19 . . . . . . . . . 10 (𝑁 ∈ ω → 𝑁 ∈ ω)
44 nnord 4644 . . . . . . . . . . . . 13 (𝑁 ∈ ω → Ord 𝑁)
45 ordirr 4574 . . . . . . . . . . . . 13 (Ord 𝑁 → ¬ 𝑁𝑁)
4644, 45syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ω → ¬ 𝑁𝑁)
4746iffalsed 3567 . . . . . . . . . . 11 (𝑁 ∈ ω → if(𝑁𝑁, 1o, ∅) = ∅)
48 peano1 4626 . . . . . . . . . . 11 ∅ ∈ ω
4947, 48eqeltrdi 2284 . . . . . . . . . 10 (𝑁 ∈ ω → if(𝑁𝑁, 1o, ∅) ∈ ω)
5040, 42, 43, 49fvmptd3 5651 . . . . . . . . 9 (𝑁 ∈ ω → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = if(𝑁𝑁, 1o, ∅))
5150, 47eqtrd 2226 . . . . . . . 8 (𝑁 ∈ ω → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = ∅)
5251ad3antrrr 492 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = ∅)
53 simplr 528 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑋𝑁) = 1o)
5439, 52, 533eqtr3rd 2235 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → 1o = ∅)
5554ex 115 . . . . 5 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 → 1o = ∅))
5637, 55mtoi 665 . . . 4 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
5756olcd 735 . . 3 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋))
58 df-dc 836 . . 3 (DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋))
5957, 58sylibr 134 . 2 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
60 simpl 109 . . . . 5 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → 𝑁 ∈ ω)
6121, 60ffvelcdmd 5694 . . . 4 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋𝑁) ∈ 2o)
6261, 25eleqtrdi 2286 . . 3 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋𝑁) ∈ {∅, 1o})
63 elpri 3641 . . 3 ((𝑋𝑁) ∈ {∅, 1o} → ((𝑋𝑁) = ∅ ∨ (𝑋𝑁) = 1o))
6462, 63syl 14 . 2 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → ((𝑋𝑁) = ∅ ∨ (𝑋𝑁) = 1o))
6535, 59, 64mpjaodan 799 1 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  c0 3446  ifcif 3557  {cpr 3619   cuni 3835  cmpt 4090  Ord word 4393  ωcom 4622  wf 5250  cfv 5254  1oc1o 6462  2oc2o 6463  xnninf 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-nninf 7179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator