ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisol GIF version

Theorem nninfisol 7199
Description: Finite elements of are isolated. That is, given a natural number and any element of , it is decidable whether the natural number (when converted to an element of ) is equal to the given element of . Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence 𝑋 to decide whether it is equal to 𝑁 (in fact, you only need to look at two elements and 𝑁 tells you where to look). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)
Assertion
Ref Expression
nninfisol ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
Distinct variable groups:   𝑖,𝑁   𝑖,𝑋

Proof of Theorem nninfisol
StepHypRef Expression
1 simpllr 534 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑋 ∈ ℕ)
2 simplr 528 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → (𝑋𝑁) = ∅)
3 simplll 533 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑁 ∈ ω)
4 simpr 110 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑁 = ∅)
51, 2, 3, 4nninfisollem0 7196 . . 3 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ 𝑁 = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
6 simp-4r 542 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → 𝑋 ∈ ℕ)
7 simpllr 534 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → (𝑋𝑁) = ∅)
8 simp-4l 541 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → 𝑁 ∈ ω)
9 simpr 110 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → ¬ 𝑁 = ∅)
109neqned 2374 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → 𝑁 ≠ ∅)
1110adantr 276 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → 𝑁 ≠ ∅)
12 simpr 110 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → (𝑋 𝑁) = ∅)
136, 7, 8, 11, 12nninfisollemne 7197 . . . 4 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
14 simp-4r 542 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → 𝑋 ∈ ℕ)
15 simpllr 534 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → (𝑋𝑁) = ∅)
16 simp-4l 541 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → 𝑁 ∈ ω)
1710adantr 276 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → 𝑁 ≠ ∅)
18 simpr 110 . . . . 5 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → (𝑋 𝑁) = 1o)
1914, 15, 16, 17, 18nninfisollemeq 7198 . . . 4 (((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋 𝑁) = 1o) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
20 nninff 7188 . . . . . . . . 9 (𝑋 ∈ ℕ𝑋:ω⟶2o)
2120adantl 277 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → 𝑋:ω⟶2o)
22 nnpredcl 4659 . . . . . . . . 9 (𝑁 ∈ ω → 𝑁 ∈ ω)
2322adantr 276 . . . . . . . 8 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → 𝑁 ∈ ω)
2421, 23ffvelcdmd 5698 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋 𝑁) ∈ 2o)
25 df2o3 6488 . . . . . . 7 2o = {∅, 1o}
2624, 25eleqtrdi 2289 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋 𝑁) ∈ {∅, 1o})
27 elpri 3645 . . . . . 6 ((𝑋 𝑁) ∈ {∅, 1o} → ((𝑋 𝑁) = ∅ ∨ (𝑋 𝑁) = 1o))
2826, 27syl 14 . . . . 5 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → ((𝑋 𝑁) = ∅ ∨ (𝑋 𝑁) = 1o))
2928ad2antrr 488 . . . 4 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → ((𝑋 𝑁) = ∅ ∨ (𝑋 𝑁) = 1o))
3013, 19, 29mpjaodan 799 . . 3 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
31 nndceq0 4654 . . . . 5 (𝑁 ∈ ω → DECID 𝑁 = ∅)
32 exmiddc 837 . . . . 5 (DECID 𝑁 = ∅ → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅))
3331, 32syl 14 . . . 4 (𝑁 ∈ ω → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅))
3433ad2antrr 488 . . 3 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅))
355, 30, 34mpjaodan 799 . 2 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = ∅) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
36 1n0 6490 . . . . . 6 1o ≠ ∅
3736neii 2369 . . . . 5 ¬ 1o = ∅
38 simpr 110 . . . . . . . 8 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
3938fveq1d 5560 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = (𝑋𝑁))
40 eqid 2196 . . . . . . . . . 10 (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))
41 eleq1 2259 . . . . . . . . . . 11 (𝑖 = 𝑁 → (𝑖𝑁𝑁𝑁))
4241ifbid 3582 . . . . . . . . . 10 (𝑖 = 𝑁 → if(𝑖𝑁, 1o, ∅) = if(𝑁𝑁, 1o, ∅))
43 id 19 . . . . . . . . . 10 (𝑁 ∈ ω → 𝑁 ∈ ω)
44 nnord 4648 . . . . . . . . . . . . 13 (𝑁 ∈ ω → Ord 𝑁)
45 ordirr 4578 . . . . . . . . . . . . 13 (Ord 𝑁 → ¬ 𝑁𝑁)
4644, 45syl 14 . . . . . . . . . . . 12 (𝑁 ∈ ω → ¬ 𝑁𝑁)
4746iffalsed 3571 . . . . . . . . . . 11 (𝑁 ∈ ω → if(𝑁𝑁, 1o, ∅) = ∅)
48 peano1 4630 . . . . . . . . . . 11 ∅ ∈ ω
4947, 48eqeltrdi 2287 . . . . . . . . . 10 (𝑁 ∈ ω → if(𝑁𝑁, 1o, ∅) ∈ ω)
5040, 42, 43, 49fvmptd3 5655 . . . . . . . . 9 (𝑁 ∈ ω → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = if(𝑁𝑁, 1o, ∅))
5150, 47eqtrd 2229 . . . . . . . 8 (𝑁 ∈ ω → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = ∅)
5251ad3antrrr 492 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅))‘𝑁) = ∅)
53 simplr 528 . . . . . . 7 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → (𝑋𝑁) = 1o)
5439, 52, 533eqtr3rd 2238 . . . . . 6 ((((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋) → 1o = ∅)
5554ex 115 . . . . 5 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 → 1o = ∅))
5637, 55mtoi 665 . . . 4 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
5756olcd 735 . . 3 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋))
58 df-dc 836 . . 3 (DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋))
5957, 58sylibr 134 . 2 (((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) ∧ (𝑋𝑁) = 1o) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
60 simpl 109 . . . . 5 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → 𝑁 ∈ ω)
6121, 60ffvelcdmd 5698 . . . 4 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋𝑁) ∈ 2o)
6261, 25eleqtrdi 2289 . . 3 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → (𝑋𝑁) ∈ {∅, 1o})
63 elpri 3645 . . 3 ((𝑋𝑁) ∈ {∅, 1o} → ((𝑋𝑁) = ∅ ∨ (𝑋𝑁) = 1o))
6462, 63syl 14 . 2 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → ((𝑋𝑁) = ∅ ∨ (𝑋𝑁) = 1o))
6535, 59, 64mpjaodan 799 1 ((𝑁 ∈ ω ∧ 𝑋 ∈ ℕ) → DECID (𝑖 ∈ ω ↦ if(𝑖𝑁, 1o, ∅)) = 𝑋)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  c0 3450  ifcif 3561  {cpr 3623   cuni 3839  cmpt 4094  Ord word 4397  ωcom 4626  wf 5254  cfv 5258  1oc1o 6467  2oc2o 6468  xnninf 7185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709  df-nninf 7186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator