Proof of Theorem nninfisol
| Step | Hyp | Ref
| Expression |
| 1 | | simpllr 534 |
. . . 4
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑋 ∈
ℕ∞) |
| 2 | | simplr 528 |
. . . 4
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ 𝑁 = ∅) → (𝑋‘𝑁) = ∅) |
| 3 | | simplll 533 |
. . . 4
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑁 ∈ ω) |
| 4 | | simpr 110 |
. . . 4
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ 𝑁 = ∅) → 𝑁 = ∅) |
| 5 | 1, 2, 3, 4 | nninfisollem0 7205 |
. . 3
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ 𝑁 = ∅) → DECID
(𝑖 ∈ ω ↦
if(𝑖 ∈ 𝑁, 1o, ∅)) =
𝑋) |
| 6 | | simp-4r 542 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = ∅) → 𝑋 ∈
ℕ∞) |
| 7 | | simpllr 534 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = ∅) → (𝑋‘𝑁) = ∅) |
| 8 | | simp-4l 541 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = ∅) → 𝑁 ∈
ω) |
| 9 | | simpr 110 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → ¬ 𝑁 = ∅) |
| 10 | 9 | neqned 2374 |
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → 𝑁 ≠ ∅) |
| 11 | 10 | adantr 276 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = ∅) → 𝑁 ≠ ∅) |
| 12 | | simpr 110 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = ∅) → (𝑋‘∪ 𝑁) =
∅) |
| 13 | 6, 7, 8, 11, 12 | nninfisollemne 7206 |
. . . 4
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = ∅) →
DECID (𝑖
∈ ω ↦ if(𝑖
∈ 𝑁, 1o,
∅)) = 𝑋) |
| 14 | | simp-4r 542 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = 1o) → 𝑋 ∈
ℕ∞) |
| 15 | | simpllr 534 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = 1o) → (𝑋‘𝑁) = ∅) |
| 16 | | simp-4l 541 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = 1o) → 𝑁 ∈
ω) |
| 17 | 10 | adantr 276 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = 1o) → 𝑁 ≠ ∅) |
| 18 | | simpr 110 |
. . . . 5
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = 1o) → (𝑋‘∪ 𝑁) =
1o) |
| 19 | 14, 15, 16, 17, 18 | nninfisollemeq 7207 |
. . . 4
⊢
(((((𝑁 ∈
ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) ∧ (𝑋‘∪ 𝑁) = 1o) →
DECID (𝑖
∈ ω ↦ if(𝑖
∈ 𝑁, 1o,
∅)) = 𝑋) |
| 20 | | nninff 7197 |
. . . . . . . . 9
⊢ (𝑋 ∈
ℕ∞ → 𝑋:ω⟶2o) |
| 21 | 20 | adantl 277 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → 𝑋:ω⟶2o) |
| 22 | | nnpredcl 4660 |
. . . . . . . . 9
⊢ (𝑁 ∈ ω → ∪ 𝑁
∈ ω) |
| 23 | 22 | adantr 276 |
. . . . . . . 8
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → ∪ 𝑁 ∈
ω) |
| 24 | 21, 23 | ffvelcdmd 5701 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → (𝑋‘∪ 𝑁) ∈
2o) |
| 25 | | df2o3 6497 |
. . . . . . 7
⊢
2o = {∅, 1o} |
| 26 | 24, 25 | eleqtrdi 2289 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → (𝑋‘∪ 𝑁) ∈ {∅,
1o}) |
| 27 | | elpri 3646 |
. . . . . 6
⊢ ((𝑋‘∪ 𝑁)
∈ {∅, 1o} → ((𝑋‘∪ 𝑁) = ∅ ∨ (𝑋‘∪ 𝑁) =
1o)) |
| 28 | 26, 27 | syl 14 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → ((𝑋‘∪ 𝑁) = ∅ ∨ (𝑋‘∪ 𝑁) =
1o)) |
| 29 | 28 | ad2antrr 488 |
. . . 4
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → ((𝑋‘∪ 𝑁) = ∅ ∨ (𝑋‘∪ 𝑁) =
1o)) |
| 30 | 13, 19, 29 | mpjaodan 799 |
. . 3
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) ∧ ¬ 𝑁 = ∅) → DECID
(𝑖 ∈ ω ↦
if(𝑖 ∈ 𝑁, 1o, ∅)) =
𝑋) |
| 31 | | nndceq0 4655 |
. . . . 5
⊢ (𝑁 ∈ ω →
DECID 𝑁 =
∅) |
| 32 | | exmiddc 837 |
. . . . 5
⊢
(DECID 𝑁 = ∅ → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅)) |
| 33 | 31, 32 | syl 14 |
. . . 4
⊢ (𝑁 ∈ ω → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅)) |
| 34 | 33 | ad2antrr 488 |
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) → (𝑁 = ∅ ∨ ¬ 𝑁 = ∅)) |
| 35 | 5, 30, 34 | mpjaodan 799 |
. 2
⊢ (((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = ∅) → DECID
(𝑖 ∈ ω ↦
if(𝑖 ∈ 𝑁, 1o, ∅)) =
𝑋) |
| 36 | | 1n0 6499 |
. . . . . 6
⊢
1o ≠ ∅ |
| 37 | 36 | neii 2369 |
. . . . 5
⊢ ¬
1o = ∅ |
| 38 | | simpr 110 |
. . . . . . . 8
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) → (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
| 39 | 38 | fveq1d 5563 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑁) = (𝑋‘𝑁)) |
| 40 | | eqid 2196 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) |
| 41 | | eleq1 2259 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑁 → (𝑖 ∈ 𝑁 ↔ 𝑁 ∈ 𝑁)) |
| 42 | 41 | ifbid 3583 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑁 → if(𝑖 ∈ 𝑁, 1o, ∅) = if(𝑁 ∈ 𝑁, 1o, ∅)) |
| 43 | | id 19 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ω → 𝑁 ∈
ω) |
| 44 | | nnord 4649 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ω → Ord 𝑁) |
| 45 | | ordirr 4579 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑁 → ¬ 𝑁 ∈ 𝑁) |
| 46 | 44, 45 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ω → ¬
𝑁 ∈ 𝑁) |
| 47 | 46 | iffalsed 3572 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ω → if(𝑁 ∈ 𝑁, 1o, ∅) =
∅) |
| 48 | | peano1 4631 |
. . . . . . . . . . 11
⊢ ∅
∈ ω |
| 49 | 47, 48 | eqeltrdi 2287 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ω → if(𝑁 ∈ 𝑁, 1o, ∅) ∈
ω) |
| 50 | 40, 42, 43, 49 | fvmptd3 5658 |
. . . . . . . . 9
⊢ (𝑁 ∈ ω → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑁) = if(𝑁 ∈ 𝑁, 1o, ∅)) |
| 51 | 50, 47 | eqtrd 2229 |
. . . . . . . 8
⊢ (𝑁 ∈ ω → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑁) = ∅) |
| 52 | 51 | ad3antrrr 492 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅))‘𝑁) = ∅) |
| 53 | | simplr 528 |
. . . . . . 7
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) → (𝑋‘𝑁) = 1o) |
| 54 | 39, 52, 53 | 3eqtr3rd 2238 |
. . . . . 6
⊢ ((((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = 1o) ∧ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) → 1o =
∅) |
| 55 | 54 | ex 115 |
. . . . 5
⊢ (((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = 1o) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 → 1o =
∅)) |
| 56 | 37, 55 | mtoi 665 |
. . . 4
⊢ (((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = 1o) → ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |
| 57 | 56 | olcd 735 |
. . 3
⊢ (((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = 1o) → ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) |
| 58 | | df-dc 836 |
. . 3
⊢
(DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ↔ ((𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋 ∨ ¬ (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋)) |
| 59 | 57, 58 | sylibr 134 |
. 2
⊢ (((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) ∧ (𝑋‘𝑁) = 1o) →
DECID (𝑖
∈ ω ↦ if(𝑖
∈ 𝑁, 1o,
∅)) = 𝑋) |
| 60 | | simpl 109 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → 𝑁 ∈ ω) |
| 61 | 21, 60 | ffvelcdmd 5701 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → (𝑋‘𝑁) ∈ 2o) |
| 62 | 61, 25 | eleqtrdi 2289 |
. . 3
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → (𝑋‘𝑁) ∈ {∅,
1o}) |
| 63 | | elpri 3646 |
. . 3
⊢ ((𝑋‘𝑁) ∈ {∅, 1o} →
((𝑋‘𝑁) = ∅ ∨ (𝑋‘𝑁) = 1o)) |
| 64 | 62, 63 | syl 14 |
. 2
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → ((𝑋‘𝑁) = ∅ ∨ (𝑋‘𝑁) = 1o)) |
| 65 | 35, 59, 64 | mpjaodan 799 |
1
⊢ ((𝑁 ∈ ω ∧ 𝑋 ∈
ℕ∞) → DECID (𝑖 ∈ ω ↦ if(𝑖 ∈ 𝑁, 1o, ∅)) = 𝑋) |