ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfi GIF version

Theorem fnfi 6914
Description: A version of fnex 5718 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)

Proof of Theorem fnfi
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 5307 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21adantr 274 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) = 𝐹)
3 reseq2 4886 . . . 4 (𝑤 = ∅ → (𝐹𝑤) = (𝐹 ↾ ∅))
43eleq1d 2239 . . 3 (𝑤 = ∅ → ((𝐹𝑤) ∈ Fin ↔ (𝐹 ↾ ∅) ∈ Fin))
5 reseq2 4886 . . . 4 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
65eleq1d 2239 . . 3 (𝑤 = 𝑦 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
7 reseq2 4886 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐹𝑤) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
87eleq1d 2239 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐹𝑤) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
9 reseq2 4886 . . . 4 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
109eleq1d 2239 . . 3 (𝑤 = 𝐴 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝐴) ∈ Fin))
11 res0 4895 . . . . 5 (𝐹 ↾ ∅) = ∅
12 0fin 6862 . . . . 5 ∅ ∈ Fin
1311, 12eqeltri 2243 . . . 4 (𝐹 ↾ ∅) ∈ Fin
1413a1i 9 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)
15 resundi 4904 . . . . 5 (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧}))
16 simp-4l 536 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝐹 Fn 𝐴)
17 simplrr 531 . . . . . . . . 9 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝑧 ∈ (𝐴𝑦))
1817eldifad 3132 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝑧𝐴)
19 fnressn 5682 . . . . . . . 8 ((𝐹 Fn 𝐴𝑧𝐴) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
2016, 18, 19syl2anc 409 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
2120uneq2d 3281 . . . . . 6 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) = ((𝐹𝑦) ∪ {⟨𝑧, (𝐹𝑧)⟩}))
22 simpr 109 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹𝑦) ∈ Fin)
2317elexd 2743 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝑧 ∈ V)
24 funfvex 5513 . . . . . . . . . 10 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ V)
2524funfni 5298 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑧𝐴) → (𝐹𝑧) ∈ V)
2616, 18, 25syl2anc 409 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹𝑧) ∈ V)
27 opexg 4213 . . . . . . . 8 ((𝑧 ∈ V ∧ (𝐹𝑧) ∈ V) → ⟨𝑧, (𝐹𝑧)⟩ ∈ V)
2823, 26, 27syl2anc 409 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ⟨𝑧, (𝐹𝑧)⟩ ∈ V)
2917eldifbd 3133 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ¬ 𝑧𝑦)
30 opeldmg 4816 . . . . . . . . . . 11 ((𝑧𝐴 ∧ (𝐹𝑧) ∈ V) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧 ∈ dom (𝐹𝑦)))
3118, 26, 30syl2anc 409 . . . . . . . . . 10 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧 ∈ dom (𝐹𝑦)))
32 dmres 4912 . . . . . . . . . . 11 dom (𝐹𝑦) = (𝑦 ∩ dom 𝐹)
3332eleq2i 2237 . . . . . . . . . 10 (𝑧 ∈ dom (𝐹𝑦) ↔ 𝑧 ∈ (𝑦 ∩ dom 𝐹))
3431, 33syl6ib 160 . . . . . . . . 9 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧 ∈ (𝑦 ∩ dom 𝐹)))
35 elin 3310 . . . . . . . . . 10 (𝑧 ∈ (𝑦 ∩ dom 𝐹) ↔ (𝑧𝑦𝑧 ∈ dom 𝐹))
3635simplbi 272 . . . . . . . . 9 (𝑧 ∈ (𝑦 ∩ dom 𝐹) → 𝑧𝑦)
3734, 36syl6 33 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧𝑦))
3829, 37mtod 658 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ¬ ⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦))
39 unsnfi 6896 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ ⟨𝑧, (𝐹𝑧)⟩ ∈ V ∧ ¬ ⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦)) → ((𝐹𝑦) ∪ {⟨𝑧, (𝐹𝑧)⟩}) ∈ Fin)
4022, 28, 38, 39syl3anc 1233 . . . . . 6 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ((𝐹𝑦) ∪ {⟨𝑧, (𝐹𝑧)⟩}) ∈ Fin)
4121, 40eqeltrd 2247 . . . . 5 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
4215, 41eqeltrid 2257 . . . 4 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)
4342ex 114 . . 3 ((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝐹𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
44 simpr 109 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
454, 6, 8, 10, 14, 43, 44findcard2sd 6870 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)
462, 45eqeltrrd 2248 1 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  cdif 3118  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583  cop 3586  dom cdm 4611  cres 4613   Fn wfn 5193  cfv 5198  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  fundmfibi  6916  resfnfinfinss  6917  fihashf1rn  10723  fihashfn  10735
  Copyright terms: Public domain W3C validator