| Step | Hyp | Ref
 | Expression | 
| 1 |   | fnresdm 5367 | 
. . 3
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | 
| 2 | 1 | adantr 276 | 
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) = 𝐹) | 
| 3 |   | reseq2 4941 | 
. . . 4
⊢ (𝑤 = ∅ → (𝐹 ↾ 𝑤) = (𝐹 ↾ ∅)) | 
| 4 | 3 | eleq1d 2265 | 
. . 3
⊢ (𝑤 = ∅ → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ ∅) ∈
Fin)) | 
| 5 |   | reseq2 4941 | 
. . . 4
⊢ (𝑤 = 𝑦 → (𝐹 ↾ 𝑤) = (𝐹 ↾ 𝑦)) | 
| 6 | 5 | eleq1d 2265 | 
. . 3
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ 𝑦) ∈ Fin)) | 
| 7 |   | reseq2 4941 | 
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝐹 ↾ 𝑤) = (𝐹 ↾ (𝑦 ∪ {𝑧}))) | 
| 8 | 7 | eleq1d 2265 | 
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)) | 
| 9 |   | reseq2 4941 | 
. . . 4
⊢ (𝑤 = 𝐴 → (𝐹 ↾ 𝑤) = (𝐹 ↾ 𝐴)) | 
| 10 | 9 | eleq1d 2265 | 
. . 3
⊢ (𝑤 = 𝐴 → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ 𝐴) ∈ Fin)) | 
| 11 |   | res0 4950 | 
. . . . 5
⊢ (𝐹 ↾ ∅) =
∅ | 
| 12 |   | 0fin 6945 | 
. . . . 5
⊢ ∅
∈ Fin | 
| 13 | 11, 12 | eqeltri 2269 | 
. . . 4
⊢ (𝐹 ↾ ∅) ∈
Fin | 
| 14 | 13 | a1i 9 | 
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈
Fin) | 
| 15 |   | resundi 4959 | 
. . . . 5
⊢ (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹 ↾ 𝑦) ∪ (𝐹 ↾ {𝑧})) | 
| 16 |   | simp-4l 541 | 
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝐹 Fn 𝐴) | 
| 17 |   | simplrr 536 | 
. . . . . . . . 9
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝑧 ∈ (𝐴 ∖ 𝑦)) | 
| 18 | 17 | eldifad 3168 | 
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝑧 ∈ 𝐴) | 
| 19 |   | fnressn 5748 | 
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹 ↾ {𝑧}) = {〈𝑧, (𝐹‘𝑧)〉}) | 
| 20 | 16, 18, 19 | syl2anc 411 | 
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹 ↾ {𝑧}) = {〈𝑧, (𝐹‘𝑧)〉}) | 
| 21 | 20 | uneq2d 3317 | 
. . . . . 6
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ((𝐹 ↾ 𝑦) ∪ (𝐹 ↾ {𝑧})) = ((𝐹 ↾ 𝑦) ∪ {〈𝑧, (𝐹‘𝑧)〉})) | 
| 22 |   | simpr 110 | 
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹 ↾ 𝑦) ∈ Fin) | 
| 23 | 17 | elexd 2776 | 
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝑧 ∈ V) | 
| 24 |   | funfvex 5575 | 
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ V) | 
| 25 | 24 | funfni 5358 | 
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ V) | 
| 26 | 16, 18, 25 | syl2anc 411 | 
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹‘𝑧) ∈ V) | 
| 27 |   | opexg 4261 | 
. . . . . . . 8
⊢ ((𝑧 ∈ V ∧ (𝐹‘𝑧) ∈ V) → 〈𝑧, (𝐹‘𝑧)〉 ∈ V) | 
| 28 | 23, 26, 27 | syl2anc 411 | 
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 〈𝑧, (𝐹‘𝑧)〉 ∈ V) | 
| 29 | 17 | eldifbd 3169 | 
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ¬ 𝑧 ∈ 𝑦) | 
| 30 |   | opeldmg 4871 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ∧ (𝐹‘𝑧) ∈ V) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ dom (𝐹 ↾ 𝑦))) | 
| 31 | 18, 26, 30 | syl2anc 411 | 
. . . . . . . . . 10
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ dom (𝐹 ↾ 𝑦))) | 
| 32 |   | dmres 4967 | 
. . . . . . . . . . 11
⊢ dom
(𝐹 ↾ 𝑦) = (𝑦 ∩ dom 𝐹) | 
| 33 | 32 | eleq2i 2263 | 
. . . . . . . . . 10
⊢ (𝑧 ∈ dom (𝐹 ↾ 𝑦) ↔ 𝑧 ∈ (𝑦 ∩ dom 𝐹)) | 
| 34 | 31, 33 | imbitrdi 161 | 
. . . . . . . . 9
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ (𝑦 ∩ dom 𝐹))) | 
| 35 |   | elin 3346 | 
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑦 ∩ dom 𝐹) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ dom 𝐹)) | 
| 36 | 35 | simplbi 274 | 
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑦 ∩ dom 𝐹) → 𝑧 ∈ 𝑦) | 
| 37 | 34, 36 | syl6 33 | 
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ 𝑦)) | 
| 38 | 29, 37 | mtod 664 | 
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ¬ 〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦)) | 
| 39 |   | unsnfi 6980 | 
. . . . . . 7
⊢ (((𝐹 ↾ 𝑦) ∈ Fin ∧ 〈𝑧, (𝐹‘𝑧)〉 ∈ V ∧ ¬ 〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦)) → ((𝐹 ↾ 𝑦) ∪ {〈𝑧, (𝐹‘𝑧)〉}) ∈ Fin) | 
| 40 | 22, 28, 38, 39 | syl3anc 1249 | 
. . . . . 6
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ((𝐹 ↾ 𝑦) ∪ {〈𝑧, (𝐹‘𝑧)〉}) ∈ Fin) | 
| 41 | 21, 40 | eqeltrd 2273 | 
. . . . 5
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ((𝐹 ↾ 𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin) | 
| 42 | 15, 41 | eqeltrid 2283 | 
. . . 4
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin) | 
| 43 | 42 | ex 115 | 
. . 3
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((𝐹 ↾ 𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)) | 
| 44 |   | simpr 110 | 
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) | 
| 45 | 4, 6, 8, 10, 14, 43, 44 | findcard2sd 6953 | 
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) ∈ Fin) | 
| 46 | 2, 45 | eqeltrrd 2274 | 
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) |