ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfi GIF version

Theorem fnfi 7020
Description: A version of fnex 5796 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)

Proof of Theorem fnfi
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 5379 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21adantr 276 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) = 𝐹)
3 reseq2 4951 . . . 4 (𝑤 = ∅ → (𝐹𝑤) = (𝐹 ↾ ∅))
43eleq1d 2273 . . 3 (𝑤 = ∅ → ((𝐹𝑤) ∈ Fin ↔ (𝐹 ↾ ∅) ∈ Fin))
5 reseq2 4951 . . . 4 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
65eleq1d 2273 . . 3 (𝑤 = 𝑦 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
7 reseq2 4951 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐹𝑤) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
87eleq1d 2273 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐹𝑤) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
9 reseq2 4951 . . . 4 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
109eleq1d 2273 . . 3 (𝑤 = 𝐴 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝐴) ∈ Fin))
11 res0 4960 . . . . 5 (𝐹 ↾ ∅) = ∅
12 0fin 6963 . . . . 5 ∅ ∈ Fin
1311, 12eqeltri 2277 . . . 4 (𝐹 ↾ ∅) ∈ Fin
1413a1i 9 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)
15 resundi 4969 . . . . 5 (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧}))
16 simp-4l 541 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝐹 Fn 𝐴)
17 simplrr 536 . . . . . . . . 9 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝑧 ∈ (𝐴𝑦))
1817eldifad 3176 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝑧𝐴)
19 fnressn 5760 . . . . . . . 8 ((𝐹 Fn 𝐴𝑧𝐴) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
2016, 18, 19syl2anc 411 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
2120uneq2d 3326 . . . . . 6 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) = ((𝐹𝑦) ∪ {⟨𝑧, (𝐹𝑧)⟩}))
22 simpr 110 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹𝑦) ∈ Fin)
2317elexd 2784 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝑧 ∈ V)
24 funfvex 5587 . . . . . . . . . 10 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ V)
2524funfni 5370 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑧𝐴) → (𝐹𝑧) ∈ V)
2616, 18, 25syl2anc 411 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹𝑧) ∈ V)
27 opexg 4271 . . . . . . . 8 ((𝑧 ∈ V ∧ (𝐹𝑧) ∈ V) → ⟨𝑧, (𝐹𝑧)⟩ ∈ V)
2823, 26, 27syl2anc 411 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ⟨𝑧, (𝐹𝑧)⟩ ∈ V)
2917eldifbd 3177 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ¬ 𝑧𝑦)
30 opeldmg 4881 . . . . . . . . . . 11 ((𝑧𝐴 ∧ (𝐹𝑧) ∈ V) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧 ∈ dom (𝐹𝑦)))
3118, 26, 30syl2anc 411 . . . . . . . . . 10 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧 ∈ dom (𝐹𝑦)))
32 dmres 4977 . . . . . . . . . . 11 dom (𝐹𝑦) = (𝑦 ∩ dom 𝐹)
3332eleq2i 2271 . . . . . . . . . 10 (𝑧 ∈ dom (𝐹𝑦) ↔ 𝑧 ∈ (𝑦 ∩ dom 𝐹))
3431, 33imbitrdi 161 . . . . . . . . 9 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧 ∈ (𝑦 ∩ dom 𝐹)))
35 elin 3355 . . . . . . . . . 10 (𝑧 ∈ (𝑦 ∩ dom 𝐹) ↔ (𝑧𝑦𝑧 ∈ dom 𝐹))
3635simplbi 274 . . . . . . . . 9 (𝑧 ∈ (𝑦 ∩ dom 𝐹) → 𝑧𝑦)
3734, 36syl6 33 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧𝑦))
3829, 37mtod 664 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ¬ ⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦))
39 unsnfi 6998 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ ⟨𝑧, (𝐹𝑧)⟩ ∈ V ∧ ¬ ⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦)) → ((𝐹𝑦) ∪ {⟨𝑧, (𝐹𝑧)⟩}) ∈ Fin)
4022, 28, 38, 39syl3anc 1249 . . . . . 6 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ((𝐹𝑦) ∪ {⟨𝑧, (𝐹𝑧)⟩}) ∈ Fin)
4121, 40eqeltrd 2281 . . . . 5 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
4215, 41eqeltrid 2291 . . . 4 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)
4342ex 115 . . 3 ((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝐹𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
44 simpr 110 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
454, 6, 8, 10, 14, 43, 44findcard2sd 6971 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)
462, 45eqeltrrd 2282 1 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1372  wcel 2175  Vcvv 2771  cdif 3162  cun 3163  cin 3164  wss 3165  c0 3459  {csn 3632  cop 3635  dom cdm 4673  cres 4675   Fn wfn 5263  cfv 5268  Fincfn 6817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-1o 6492  df-er 6610  df-en 6818  df-fin 6820
This theorem is referenced by:  fundmfibi  7022  resfnfinfinss  7023  seqf1oglem2  10646  seqf1og  10647  fihashf1rn  10914  fihashfn  10926  wrdfin  10988  xpsfrnel  13094
  Copyright terms: Public domain W3C validator