ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfi GIF version

Theorem fnfi 7053
Description: A version of fnex 5819 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)

Proof of Theorem fnfi
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 5394 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21adantr 276 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) = 𝐹)
3 reseq2 4963 . . . 4 (𝑤 = ∅ → (𝐹𝑤) = (𝐹 ↾ ∅))
43eleq1d 2275 . . 3 (𝑤 = ∅ → ((𝐹𝑤) ∈ Fin ↔ (𝐹 ↾ ∅) ∈ Fin))
5 reseq2 4963 . . . 4 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
65eleq1d 2275 . . 3 (𝑤 = 𝑦 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
7 reseq2 4963 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → (𝐹𝑤) = (𝐹 ↾ (𝑦 ∪ {𝑧})))
87eleq1d 2275 . . 3 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐹𝑤) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
9 reseq2 4963 . . . 4 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
109eleq1d 2275 . . 3 (𝑤 = 𝐴 → ((𝐹𝑤) ∈ Fin ↔ (𝐹𝐴) ∈ Fin))
11 res0 4972 . . . . 5 (𝐹 ↾ ∅) = ∅
12 0fin 6996 . . . . 5 ∅ ∈ Fin
1311, 12eqeltri 2279 . . . 4 (𝐹 ↾ ∅) ∈ Fin
1413a1i 9 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈ Fin)
15 resundi 4981 . . . . 5 (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧}))
16 simp-4l 541 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝐹 Fn 𝐴)
17 simplrr 536 . . . . . . . . 9 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝑧 ∈ (𝐴𝑦))
1817eldifad 3181 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝑧𝐴)
19 fnressn 5783 . . . . . . . 8 ((𝐹 Fn 𝐴𝑧𝐴) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
2016, 18, 19syl2anc 411 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹 ↾ {𝑧}) = {⟨𝑧, (𝐹𝑧)⟩})
2120uneq2d 3331 . . . . . 6 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) = ((𝐹𝑦) ∪ {⟨𝑧, (𝐹𝑧)⟩}))
22 simpr 110 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹𝑦) ∈ Fin)
2317elexd 2787 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → 𝑧 ∈ V)
24 funfvex 5606 . . . . . . . . . 10 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ V)
2524funfni 5385 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑧𝐴) → (𝐹𝑧) ∈ V)
2616, 18, 25syl2anc 411 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹𝑧) ∈ V)
27 opexg 4280 . . . . . . . 8 ((𝑧 ∈ V ∧ (𝐹𝑧) ∈ V) → ⟨𝑧, (𝐹𝑧)⟩ ∈ V)
2823, 26, 27syl2anc 411 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ⟨𝑧, (𝐹𝑧)⟩ ∈ V)
2917eldifbd 3182 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ¬ 𝑧𝑦)
30 opeldmg 4892 . . . . . . . . . . 11 ((𝑧𝐴 ∧ (𝐹𝑧) ∈ V) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧 ∈ dom (𝐹𝑦)))
3118, 26, 30syl2anc 411 . . . . . . . . . 10 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧 ∈ dom (𝐹𝑦)))
32 dmres 4989 . . . . . . . . . . 11 dom (𝐹𝑦) = (𝑦 ∩ dom 𝐹)
3332eleq2i 2273 . . . . . . . . . 10 (𝑧 ∈ dom (𝐹𝑦) ↔ 𝑧 ∈ (𝑦 ∩ dom 𝐹))
3431, 33imbitrdi 161 . . . . . . . . 9 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧 ∈ (𝑦 ∩ dom 𝐹)))
35 elin 3360 . . . . . . . . . 10 (𝑧 ∈ (𝑦 ∩ dom 𝐹) ↔ (𝑧𝑦𝑧 ∈ dom 𝐹))
3635simplbi 274 . . . . . . . . 9 (𝑧 ∈ (𝑦 ∩ dom 𝐹) → 𝑧𝑦)
3734, 36syl6 33 . . . . . . . 8 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦) → 𝑧𝑦))
3829, 37mtod 665 . . . . . . 7 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ¬ ⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦))
39 unsnfi 7031 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ ⟨𝑧, (𝐹𝑧)⟩ ∈ V ∧ ¬ ⟨𝑧, (𝐹𝑧)⟩ ∈ (𝐹𝑦)) → ((𝐹𝑦) ∪ {⟨𝑧, (𝐹𝑧)⟩}) ∈ Fin)
4022, 28, 38, 39syl3anc 1250 . . . . . 6 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ((𝐹𝑦) ∪ {⟨𝑧, (𝐹𝑧)⟩}) ∈ Fin)
4121, 40eqeltrd 2283 . . . . 5 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin)
4215, 41eqeltrid 2293 . . . 4 (((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) ∧ (𝐹𝑦) ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)
4342ex 115 . . 3 ((((𝐹 Fn 𝐴𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦𝐴𝑧 ∈ (𝐴𝑦))) → ((𝐹𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin))
44 simpr 110 . . 3 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐴 ∈ Fin)
454, 6, 8, 10, 14, 43, 44findcard2sd 7004 . 2 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → (𝐹𝐴) ∈ Fin)
462, 45eqeltrrd 2284 1 ((𝐹 Fn 𝐴𝐴 ∈ Fin) → 𝐹 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  cdif 3167  cun 3168  cin 3169  wss 3170  c0 3464  {csn 3638  cop 3641  dom cdm 4683  cres 4685   Fn wfn 5275  cfv 5280  Fincfn 6840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-1o 6515  df-er 6633  df-en 6841  df-fin 6843
This theorem is referenced by:  fundmfibi  7055  resfnfinfinss  7056  seqf1oglem2  10687  seqf1og  10688  fihashf1rn  10955  fihashfn  10967  wrdfin  11035  xpsfrnel  13251
  Copyright terms: Public domain W3C validator