Step | Hyp | Ref
| Expression |
1 | | fnresdm 5307 |
. . 3
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
2 | 1 | adantr 274 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) = 𝐹) |
3 | | reseq2 4886 |
. . . 4
⊢ (𝑤 = ∅ → (𝐹 ↾ 𝑤) = (𝐹 ↾ ∅)) |
4 | 3 | eleq1d 2239 |
. . 3
⊢ (𝑤 = ∅ → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ ∅) ∈
Fin)) |
5 | | reseq2 4886 |
. . . 4
⊢ (𝑤 = 𝑦 → (𝐹 ↾ 𝑤) = (𝐹 ↾ 𝑦)) |
6 | 5 | eleq1d 2239 |
. . 3
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ 𝑦) ∈ Fin)) |
7 | | reseq2 4886 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝐹 ↾ 𝑤) = (𝐹 ↾ (𝑦 ∪ {𝑧}))) |
8 | 7 | eleq1d 2239 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)) |
9 | | reseq2 4886 |
. . . 4
⊢ (𝑤 = 𝐴 → (𝐹 ↾ 𝑤) = (𝐹 ↾ 𝐴)) |
10 | 9 | eleq1d 2239 |
. . 3
⊢ (𝑤 = 𝐴 → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ 𝐴) ∈ Fin)) |
11 | | res0 4895 |
. . . . 5
⊢ (𝐹 ↾ ∅) =
∅ |
12 | | 0fin 6862 |
. . . . 5
⊢ ∅
∈ Fin |
13 | 11, 12 | eqeltri 2243 |
. . . 4
⊢ (𝐹 ↾ ∅) ∈
Fin |
14 | 13 | a1i 9 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈
Fin) |
15 | | resundi 4904 |
. . . . 5
⊢ (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹 ↾ 𝑦) ∪ (𝐹 ↾ {𝑧})) |
16 | | simp-4l 536 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝐹 Fn 𝐴) |
17 | | simplrr 531 |
. . . . . . . . 9
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
18 | 17 | eldifad 3132 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝑧 ∈ 𝐴) |
19 | | fnressn 5682 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹 ↾ {𝑧}) = {〈𝑧, (𝐹‘𝑧)〉}) |
20 | 16, 18, 19 | syl2anc 409 |
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹 ↾ {𝑧}) = {〈𝑧, (𝐹‘𝑧)〉}) |
21 | 20 | uneq2d 3281 |
. . . . . 6
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ((𝐹 ↾ 𝑦) ∪ (𝐹 ↾ {𝑧})) = ((𝐹 ↾ 𝑦) ∪ {〈𝑧, (𝐹‘𝑧)〉})) |
22 | | simpr 109 |
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹 ↾ 𝑦) ∈ Fin) |
23 | 17 | elexd 2743 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝑧 ∈ V) |
24 | | funfvex 5513 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ V) |
25 | 24 | funfni 5298 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ V) |
26 | 16, 18, 25 | syl2anc 409 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹‘𝑧) ∈ V) |
27 | | opexg 4213 |
. . . . . . . 8
⊢ ((𝑧 ∈ V ∧ (𝐹‘𝑧) ∈ V) → 〈𝑧, (𝐹‘𝑧)〉 ∈ V) |
28 | 23, 26, 27 | syl2anc 409 |
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 〈𝑧, (𝐹‘𝑧)〉 ∈ V) |
29 | 17 | eldifbd 3133 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ¬ 𝑧 ∈ 𝑦) |
30 | | opeldmg 4816 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ∧ (𝐹‘𝑧) ∈ V) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ dom (𝐹 ↾ 𝑦))) |
31 | 18, 26, 30 | syl2anc 409 |
. . . . . . . . . 10
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ dom (𝐹 ↾ 𝑦))) |
32 | | dmres 4912 |
. . . . . . . . . . 11
⊢ dom
(𝐹 ↾ 𝑦) = (𝑦 ∩ dom 𝐹) |
33 | 32 | eleq2i 2237 |
. . . . . . . . . 10
⊢ (𝑧 ∈ dom (𝐹 ↾ 𝑦) ↔ 𝑧 ∈ (𝑦 ∩ dom 𝐹)) |
34 | 31, 33 | syl6ib 160 |
. . . . . . . . 9
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ (𝑦 ∩ dom 𝐹))) |
35 | | elin 3310 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑦 ∩ dom 𝐹) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ dom 𝐹)) |
36 | 35 | simplbi 272 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑦 ∩ dom 𝐹) → 𝑧 ∈ 𝑦) |
37 | 34, 36 | syl6 33 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ 𝑦)) |
38 | 29, 37 | mtod 658 |
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ¬ 〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦)) |
39 | | unsnfi 6896 |
. . . . . . 7
⊢ (((𝐹 ↾ 𝑦) ∈ Fin ∧ 〈𝑧, (𝐹‘𝑧)〉 ∈ V ∧ ¬ 〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦)) → ((𝐹 ↾ 𝑦) ∪ {〈𝑧, (𝐹‘𝑧)〉}) ∈ Fin) |
40 | 22, 28, 38, 39 | syl3anc 1233 |
. . . . . 6
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ((𝐹 ↾ 𝑦) ∪ {〈𝑧, (𝐹‘𝑧)〉}) ∈ Fin) |
41 | 21, 40 | eqeltrd 2247 |
. . . . 5
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ((𝐹 ↾ 𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin) |
42 | 15, 41 | eqeltrid 2257 |
. . . 4
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin) |
43 | 42 | ex 114 |
. . 3
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((𝐹 ↾ 𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)) |
44 | | simpr 109 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) |
45 | 4, 6, 8, 10, 14, 43, 44 | findcard2sd 6870 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) ∈ Fin) |
46 | 2, 45 | eqeltrrd 2248 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) |