| Step | Hyp | Ref
| Expression |
| 1 | | fnresdm 5370 |
. . 3
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
| 2 | 1 | adantr 276 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) = 𝐹) |
| 3 | | reseq2 4942 |
. . . 4
⊢ (𝑤 = ∅ → (𝐹 ↾ 𝑤) = (𝐹 ↾ ∅)) |
| 4 | 3 | eleq1d 2265 |
. . 3
⊢ (𝑤 = ∅ → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ ∅) ∈
Fin)) |
| 5 | | reseq2 4942 |
. . . 4
⊢ (𝑤 = 𝑦 → (𝐹 ↾ 𝑤) = (𝐹 ↾ 𝑦)) |
| 6 | 5 | eleq1d 2265 |
. . 3
⊢ (𝑤 = 𝑦 → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ 𝑦) ∈ Fin)) |
| 7 | | reseq2 4942 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝐹 ↾ 𝑤) = (𝐹 ↾ (𝑦 ∪ {𝑧}))) |
| 8 | 7 | eleq1d 2265 |
. . 3
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)) |
| 9 | | reseq2 4942 |
. . . 4
⊢ (𝑤 = 𝐴 → (𝐹 ↾ 𝑤) = (𝐹 ↾ 𝐴)) |
| 10 | 9 | eleq1d 2265 |
. . 3
⊢ (𝑤 = 𝐴 → ((𝐹 ↾ 𝑤) ∈ Fin ↔ (𝐹 ↾ 𝐴) ∈ Fin)) |
| 11 | | res0 4951 |
. . . . 5
⊢ (𝐹 ↾ ∅) =
∅ |
| 12 | | 0fin 6954 |
. . . . 5
⊢ ∅
∈ Fin |
| 13 | 11, 12 | eqeltri 2269 |
. . . 4
⊢ (𝐹 ↾ ∅) ∈
Fin |
| 14 | 13 | a1i 9 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ ∅) ∈
Fin) |
| 15 | | resundi 4960 |
. . . . 5
⊢ (𝐹 ↾ (𝑦 ∪ {𝑧})) = ((𝐹 ↾ 𝑦) ∪ (𝐹 ↾ {𝑧})) |
| 16 | | simp-4l 541 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝐹 Fn 𝐴) |
| 17 | | simplrr 536 |
. . . . . . . . 9
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝑧 ∈ (𝐴 ∖ 𝑦)) |
| 18 | 17 | eldifad 3168 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝑧 ∈ 𝐴) |
| 19 | | fnressn 5751 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹 ↾ {𝑧}) = {〈𝑧, (𝐹‘𝑧)〉}) |
| 20 | 16, 18, 19 | syl2anc 411 |
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹 ↾ {𝑧}) = {〈𝑧, (𝐹‘𝑧)〉}) |
| 21 | 20 | uneq2d 3318 |
. . . . . 6
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ((𝐹 ↾ 𝑦) ∪ (𝐹 ↾ {𝑧})) = ((𝐹 ↾ 𝑦) ∪ {〈𝑧, (𝐹‘𝑧)〉})) |
| 22 | | simpr 110 |
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹 ↾ 𝑦) ∈ Fin) |
| 23 | 17 | elexd 2776 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 𝑧 ∈ V) |
| 24 | | funfvex 5578 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ V) |
| 25 | 24 | funfni 5361 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ V) |
| 26 | 16, 18, 25 | syl2anc 411 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹‘𝑧) ∈ V) |
| 27 | | opexg 4262 |
. . . . . . . 8
⊢ ((𝑧 ∈ V ∧ (𝐹‘𝑧) ∈ V) → 〈𝑧, (𝐹‘𝑧)〉 ∈ V) |
| 28 | 23, 26, 27 | syl2anc 411 |
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → 〈𝑧, (𝐹‘𝑧)〉 ∈ V) |
| 29 | 17 | eldifbd 3169 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ¬ 𝑧 ∈ 𝑦) |
| 30 | | opeldmg 4872 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝐴 ∧ (𝐹‘𝑧) ∈ V) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ dom (𝐹 ↾ 𝑦))) |
| 31 | 18, 26, 30 | syl2anc 411 |
. . . . . . . . . 10
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ dom (𝐹 ↾ 𝑦))) |
| 32 | | dmres 4968 |
. . . . . . . . . . 11
⊢ dom
(𝐹 ↾ 𝑦) = (𝑦 ∩ dom 𝐹) |
| 33 | 32 | eleq2i 2263 |
. . . . . . . . . 10
⊢ (𝑧 ∈ dom (𝐹 ↾ 𝑦) ↔ 𝑧 ∈ (𝑦 ∩ dom 𝐹)) |
| 34 | 31, 33 | imbitrdi 161 |
. . . . . . . . 9
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ (𝑦 ∩ dom 𝐹))) |
| 35 | | elin 3347 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑦 ∩ dom 𝐹) ↔ (𝑧 ∈ 𝑦 ∧ 𝑧 ∈ dom 𝐹)) |
| 36 | 35 | simplbi 274 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝑦 ∩ dom 𝐹) → 𝑧 ∈ 𝑦) |
| 37 | 34, 36 | syl6 33 |
. . . . . . . 8
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦) → 𝑧 ∈ 𝑦)) |
| 38 | 29, 37 | mtod 664 |
. . . . . . 7
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ¬ 〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦)) |
| 39 | | unsnfi 6989 |
. . . . . . 7
⊢ (((𝐹 ↾ 𝑦) ∈ Fin ∧ 〈𝑧, (𝐹‘𝑧)〉 ∈ V ∧ ¬ 〈𝑧, (𝐹‘𝑧)〉 ∈ (𝐹 ↾ 𝑦)) → ((𝐹 ↾ 𝑦) ∪ {〈𝑧, (𝐹‘𝑧)〉}) ∈ Fin) |
| 40 | 22, 28, 38, 39 | syl3anc 1249 |
. . . . . 6
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ((𝐹 ↾ 𝑦) ∪ {〈𝑧, (𝐹‘𝑧)〉}) ∈ Fin) |
| 41 | 21, 40 | eqeltrd 2273 |
. . . . 5
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → ((𝐹 ↾ 𝑦) ∪ (𝐹 ↾ {𝑧})) ∈ Fin) |
| 42 | 15, 41 | eqeltrid 2283 |
. . . 4
⊢
(((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) ∧ (𝐹 ↾ 𝑦) ∈ Fin) → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin) |
| 43 | 42 | ex 115 |
. . 3
⊢ ((((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) ∧ 𝑦 ∈ Fin) ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → ((𝐹 ↾ 𝑦) ∈ Fin → (𝐹 ↾ (𝑦 ∪ {𝑧})) ∈ Fin)) |
| 44 | | simpr 110 |
. . 3
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐴 ∈ Fin) |
| 45 | 4, 6, 8, 10, 14, 43, 44 | findcard2sd 6962 |
. 2
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (𝐹 ↾ 𝐴) ∈ Fin) |
| 46 | 2, 45 | eqeltrrd 2274 |
1
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) |