ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irrap GIF version

Theorem logbgcd1irrap 14281
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example, (2 logb 9) # 𝑄 where 𝑄 is rational. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irrap (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄)

Proof of Theorem logbgcd1irrap
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 531 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → 𝑄 ∈ ℚ)
2 elq 9620 . . 3 (𝑄 ∈ ℚ ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℕ 𝑄 = (𝑚 / 𝑛))
31, 2sylib 122 . 2 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℕ 𝑄 = (𝑚 / 𝑛))
4 simp-4l 541 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑋 ∈ (ℤ‘2))
5 simp-4r 542 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝐵 ∈ (ℤ‘2))
6 simprl 529 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝑋 gcd 𝐵) = 1)
76ad2antrr 488 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → (𝑋 gcd 𝐵) = 1)
8 simplrl 535 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑚 ∈ ℤ)
9 simplrr 536 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑛 ∈ ℕ)
104, 5, 7, 8, 9logbgcd1irraplemap 14280 . . . . 5 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → (𝐵 logb 𝑋) # (𝑚 / 𝑛))
11 simpr 110 . . . . 5 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑄 = (𝑚 / 𝑛))
1210, 11breqtrrd 4031 . . . 4 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → (𝐵 logb 𝑋) # 𝑄)
1312ex 115 . . 3 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑄 = (𝑚 / 𝑛) → (𝐵 logb 𝑋) # 𝑄))
1413rexlimdvva 2602 . 2 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℕ 𝑄 = (𝑚 / 𝑛) → (𝐵 logb 𝑋) # 𝑄))
153, 14mpd 13 1 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4003  cfv 5216  (class class class)co 5874  1c1 7811   # cap 8536   / cdiv 8627  cn 8917  2c2 8968  cz 9251  cuz 9526  cq 9617   gcd cgcd 11937   logb clogb 14254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930  ax-pre-suploc 7931  ax-addf 7932  ax-mulf 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-disj 3981  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-of 6082  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-frec 6391  df-1o 6416  df-2o 6417  df-oadd 6420  df-er 6534  df-map 6649  df-pm 6650  df-en 6740  df-dom 6741  df-fin 6742  df-sup 6982  df-inf 6983  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527  df-q 9618  df-rp 9652  df-xneg 9770  df-xadd 9771  df-ioo 9890  df-ico 9892  df-icc 9893  df-fz 10007  df-fzo 10140  df-fl 10267  df-mod 10320  df-seqfrec 10443  df-exp 10517  df-fac 10701  df-bc 10723  df-ihash 10751  df-shft 10819  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003  df-clim 11282  df-sumdc 11357  df-ef 11651  df-e 11652  df-dvds 11790  df-gcd 11938  df-prm 12102  df-rest 12680  df-topgen 12699  df-psmet 13338  df-xmet 13339  df-met 13340  df-bl 13341  df-mopn 13342  df-top 13389  df-topon 13402  df-bases 13434  df-ntr 13489  df-cn 13581  df-cnp 13582  df-tx 13646  df-cncf 13951  df-limced 14018  df-dvap 14019  df-relog 14172  df-rpcxp 14173  df-logb 14255
This theorem is referenced by:  2logb9irrap  14288
  Copyright terms: Public domain W3C validator