Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irrap GIF version

Theorem logbgcd1irrap 13131
 Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example, (2 logb 9) # 𝑄 where 𝑄 is rational. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irrap (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄)

Proof of Theorem logbgcd1irrap
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 522 . . 3 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → 𝑄 ∈ ℚ)
2 elq 9470 . . 3 (𝑄 ∈ ℚ ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℕ 𝑄 = (𝑚 / 𝑛))
31, 2sylib 121 . 2 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℕ 𝑄 = (𝑚 / 𝑛))
4 simp-4l 531 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑋 ∈ (ℤ‘2))
5 simp-4r 532 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝐵 ∈ (ℤ‘2))
6 simprl 521 . . . . . . 7 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝑋 gcd 𝐵) = 1)
76ad2antrr 480 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → (𝑋 gcd 𝐵) = 1)
8 simplrl 525 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑚 ∈ ℤ)
9 simplrr 526 . . . . . 6 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑛 ∈ ℕ)
104, 5, 7, 8, 9logbgcd1irraplemap 13130 . . . . 5 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → (𝐵 logb 𝑋) # (𝑚 / 𝑛))
11 simpr 109 . . . . 5 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑄 = (𝑚 / 𝑛))
1210, 11breqtrrd 3966 . . . 4 (((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → (𝐵 logb 𝑋) # 𝑄)
1312ex 114 . . 3 ((((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑄 = (𝑚 / 𝑛) → (𝐵 logb 𝑋) # 𝑄))
1413rexlimdvva 2562 . 2 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℕ 𝑄 = (𝑚 / 𝑛) → (𝐵 logb 𝑋) # 𝑄))
153, 14mpd 13 1 (((𝑋 ∈ (ℤ‘2) ∧ 𝐵 ∈ (ℤ‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 2112  ∃wrex 2419   class class class wbr 3939  ‘cfv 5135  (class class class)co 5786  1c1 7674   # cap 8396   / cdiv 8485  ℕcn 8773  2c2 8824  ℤcz 9107  ℤ≥cuz 9379  ℚcq 9467   gcd cgcd 11707   logb clogb 13104 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2114  ax-14 2115  ax-ext 2123  ax-coll 4053  ax-sep 4056  ax-nul 4064  ax-pow 4108  ax-pr 4142  ax-un 4366  ax-setind 4463  ax-iinf 4513  ax-cnex 7764  ax-resscn 7765  ax-1cn 7766  ax-1re 7767  ax-icn 7768  ax-addcl 7769  ax-addrcl 7770  ax-mulcl 7771  ax-mulrcl 7772  ax-addcom 7773  ax-mulcom 7774  ax-addass 7775  ax-mulass 7776  ax-distr 7777  ax-i2m1 7778  ax-0lt1 7779  ax-1rid 7780  ax-0id 7781  ax-rnegex 7782  ax-precex 7783  ax-cnre 7784  ax-pre-ltirr 7785  ax-pre-ltwlin 7786  ax-pre-lttrn 7787  ax-pre-apti 7788  ax-pre-ltadd 7789  ax-pre-mulgt0 7790  ax-pre-mulext 7791  ax-arch 7792  ax-caucvg 7793  ax-pre-suploc 7794  ax-addf 7795  ax-mulf 7796 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ne 2311  df-nel 2406  df-ral 2423  df-rex 2424  df-reu 2425  df-rmo 2426  df-rab 2427  df-v 2693  df-sbc 2916  df-csb 3010  df-dif 3080  df-un 3082  df-in 3084  df-ss 3091  df-nul 3371  df-if 3482  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-int 3782  df-iun 3825  df-disj 3917  df-br 3940  df-opab 4000  df-mpt 4001  df-tr 4037  df-id 4226  df-po 4229  df-iso 4230  df-iord 4299  df-on 4301  df-ilim 4302  df-suc 4304  df-iom 4516  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-rn 4562  df-res 4563  df-ima 4564  df-iota 5100  df-fun 5137  df-fn 5138  df-f 5139  df-f1 5140  df-fo 5141  df-f1o 5142  df-fv 5143  df-isom 5144  df-riota 5742  df-ov 5789  df-oprab 5790  df-mpo 5791  df-of 5994  df-1st 6050  df-2nd 6051  df-recs 6214  df-irdg 6279  df-frec 6300  df-1o 6325  df-2o 6326  df-oadd 6329  df-er 6441  df-map 6556  df-pm 6557  df-en 6647  df-dom 6648  df-fin 6649  df-sup 6888  df-inf 6889  df-pnf 7855  df-mnf 7856  df-xr 7857  df-ltxr 7858  df-le 7859  df-sub 7988  df-neg 7989  df-reap 8390  df-ap 8397  df-div 8486  df-inn 8774  df-2 8832  df-3 8833  df-4 8834  df-n0 9031  df-z 9108  df-uz 9380  df-q 9468  df-rp 9500  df-xneg 9618  df-xadd 9619  df-ioo 9734  df-ico 9736  df-icc 9737  df-fz 9851  df-fzo 9980  df-fl 10103  df-mod 10156  df-seqfrec 10279  df-exp 10353  df-fac 10533  df-bc 10555  df-ihash 10583  df-shft 10648  df-cj 10675  df-re 10676  df-im 10677  df-rsqrt 10831  df-abs 10832  df-clim 11109  df-sumdc 11184  df-ef 11427  df-e 11428  df-dvds 11566  df-gcd 11708  df-prm 11861  df-rest 12197  df-topgen 12216  df-psmet 12231  df-xmet 12232  df-met 12233  df-bl 12234  df-mopn 12235  df-top 12240  df-topon 12253  df-bases 12285  df-ntr 12340  df-cn 12432  df-cnp 12433  df-tx 12497  df-cncf 12802  df-limced 12869  df-dvap 12870  df-relog 13023  df-rpcxp 13024  df-logb 13105 This theorem is referenced by:  2logb9irrap  13138
 Copyright terms: Public domain W3C validator