![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > logbgcd1irrap | GIF version |
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example, (2 logb 9) # 𝑄 where 𝑄 is rational. (Contributed by AV, 29-Dec-2022.) |
Ref | Expression |
---|---|
logbgcd1irrap | ⊢ (((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 531 | . . 3 ⊢ (((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → 𝑄 ∈ ℚ) | |
2 | elq 9620 | . . 3 ⊢ (𝑄 ∈ ℚ ↔ ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℕ 𝑄 = (𝑚 / 𝑛)) | |
3 | 1, 2 | sylib 122 | . 2 ⊢ (((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → ∃𝑚 ∈ ℤ ∃𝑛 ∈ ℕ 𝑄 = (𝑚 / 𝑛)) |
4 | simp-4l 541 | . . . . . 6 ⊢ (((((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑋 ∈ (ℤ≥‘2)) | |
5 | simp-4r 542 | . . . . . 6 ⊢ (((((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝐵 ∈ (ℤ≥‘2)) | |
6 | simprl 529 | . . . . . . 7 ⊢ (((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝑋 gcd 𝐵) = 1) | |
7 | 6 | ad2antrr 488 | . . . . . 6 ⊢ (((((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → (𝑋 gcd 𝐵) = 1) |
8 | simplrl 535 | . . . . . 6 ⊢ (((((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑚 ∈ ℤ) | |
9 | simplrr 536 | . . . . . 6 ⊢ (((((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑛 ∈ ℕ) | |
10 | 4, 5, 7, 8, 9 | logbgcd1irraplemap 14280 | . . . . 5 ⊢ (((((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → (𝐵 logb 𝑋) # (𝑚 / 𝑛)) |
11 | simpr 110 | . . . . 5 ⊢ (((((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → 𝑄 = (𝑚 / 𝑛)) | |
12 | 10, 11 | breqtrrd 4031 | . . . 4 ⊢ (((((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) ∧ 𝑄 = (𝑚 / 𝑛)) → (𝐵 logb 𝑋) # 𝑄) |
13 | 12 | ex 115 | . . 3 ⊢ ((((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℕ)) → (𝑄 = (𝑚 / 𝑛) → (𝐵 logb 𝑋) # 𝑄)) |
14 | 13 | rexlimdvva 2602 | . 2 ⊢ (((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (∃𝑚 ∈ ℤ ∃𝑛 ∈ ℕ 𝑄 = (𝑚 / 𝑛) → (𝐵 logb 𝑋) # 𝑄)) |
15 | 3, 14 | mpd 13 | 1 ⊢ (((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2)) ∧ ((𝑋 gcd 𝐵) = 1 ∧ 𝑄 ∈ ℚ)) → (𝐵 logb 𝑋) # 𝑄) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 class class class wbr 4003 ‘cfv 5216 (class class class)co 5874 1c1 7811 # cap 8536 / cdiv 8627 ℕcn 8917 2c2 8968 ℤcz 9251 ℤ≥cuz 9526 ℚcq 9617 gcd cgcd 11937 logb clogb 14254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 ax-arch 7929 ax-caucvg 7930 ax-pre-suploc 7931 ax-addf 7932 ax-mulf 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-disj 3981 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-isom 5225 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-of 6082 df-1st 6140 df-2nd 6141 df-recs 6305 df-irdg 6370 df-frec 6391 df-1o 6416 df-2o 6417 df-oadd 6420 df-er 6534 df-map 6649 df-pm 6650 df-en 6740 df-dom 6741 df-fin 6742 df-sup 6982 df-inf 6983 df-pnf 7992 df-mnf 7993 df-xr 7994 df-ltxr 7995 df-le 7996 df-sub 8128 df-neg 8129 df-reap 8530 df-ap 8537 df-div 8628 df-inn 8918 df-2 8976 df-3 8977 df-4 8978 df-n0 9175 df-z 9252 df-uz 9527 df-q 9618 df-rp 9652 df-xneg 9770 df-xadd 9771 df-ioo 9890 df-ico 9892 df-icc 9893 df-fz 10007 df-fzo 10140 df-fl 10267 df-mod 10320 df-seqfrec 10443 df-exp 10517 df-fac 10701 df-bc 10723 df-ihash 10751 df-shft 10819 df-cj 10846 df-re 10847 df-im 10848 df-rsqrt 11002 df-abs 11003 df-clim 11282 df-sumdc 11357 df-ef 11651 df-e 11652 df-dvds 11790 df-gcd 11938 df-prm 12102 df-rest 12680 df-topgen 12699 df-psmet 13338 df-xmet 13339 df-met 13340 df-bl 13341 df-mopn 13342 df-top 13389 df-topon 13402 df-bases 13434 df-ntr 13489 df-cn 13581 df-cnp 13582 df-tx 13646 df-cncf 13951 df-limced 14018 df-dvap 14019 df-relog 14172 df-rpcxp 14173 df-logb 14255 |
This theorem is referenced by: 2logb9irrap 14288 |
Copyright terms: Public domain | W3C validator |