| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp-4r | GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| simp-4r | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: simp-5r 544 fimax2gtri 7031 finexdc 7032 dcfi 7116 difinfsn 7235 nnnninfeq2 7264 nninfisol 7268 exmidfodomrlemr 7348 exmidfodomrlemrALT 7349 suplocexprlemru 7874 suplocsrlemb 7961 suplocsrlem 7963 aptap 8765 supinfneg 9758 infsupneg 9759 xaddf 10008 xaddval 10009 nn0ltexp2 10898 hashunlem 10993 swrdccatin1 11223 reuccatpfxs1 11245 xrmaxiflemcl 11722 xrmaxiflemlub 11725 xrmaxltsup 11735 sumeq2 11836 fsumconst 11931 prodeq2 12034 fprodconst 12097 nninfctlemfo 12527 prdsval 13272 sgrpidmndm 13419 mhmmnd 13619 ghmcmn 13830 issrg 13894 cncnp 14869 neitx 14907 dedekindeulemlu 15260 suplociccreex 15263 dedekindicclemlu 15269 cnplimclemr 15308 limccnp2cntop 15316 logbgcd1irrap 15609 lgsval 15648 |
| Copyright terms: Public domain | W3C validator |