| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp-4r | GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| simp-4r | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpllr 534 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem is referenced by: simp-5r 544 fimax2gtri 6962 finexdc 6963 dcfi 7047 difinfsn 7166 nnnninfeq2 7195 nninfisol 7199 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 suplocexprlemru 7786 suplocsrlemb 7873 suplocsrlem 7875 aptap 8677 supinfneg 9669 infsupneg 9670 xaddf 9919 xaddval 9920 nn0ltexp2 10801 hashunlem 10896 xrmaxiflemcl 11410 xrmaxiflemlub 11413 xrmaxltsup 11423 sumeq2 11524 fsumconst 11619 prodeq2 11722 fprodconst 11785 nninfctlemfo 12207 sgrpidmndm 13061 mhmmnd 13246 ghmcmn 13457 issrg 13521 cncnp 14466 neitx 14504 dedekindeulemlu 14857 suplociccreex 14860 dedekindicclemlu 14866 cnplimclemr 14905 limccnp2cntop 14913 logbgcd1irrap 15206 lgsval 15245 | 
| Copyright terms: Public domain | W3C validator |