Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp-4r | GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
simp-4r | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 524 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
2 | 1 | adantr 274 | 1 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: simp-5r 534 fimax2gtri 6863 finexdc 6864 dcfi 6942 difinfsn 7061 nnnninfeq2 7089 nninfisol 7093 exmidfodomrlemr 7154 exmidfodomrlemrALT 7155 suplocexprlemru 7656 suplocsrlemb 7743 suplocsrlem 7745 supinfneg 9529 infsupneg 9530 xaddf 9776 xaddval 9777 nn0ltexp2 10619 hashunlem 10713 xrmaxiflemcl 11182 xrmaxiflemlub 11185 xrmaxltsup 11195 sumeq2 11296 fsumconst 11391 prodeq2 11494 fprodconst 11557 cncnp 12830 neitx 12868 dedekindeulemlu 13199 suplociccreex 13202 dedekindicclemlu 13208 cnplimclemr 13238 limccnp2cntop 13246 logbgcd1irrap 13488 lgsval 13505 |
Copyright terms: Public domain | W3C validator |