![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp-4r | GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
simp-4r | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 534 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
2 | 1 | adantr 276 | 1 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: simp-5r 544 fimax2gtri 6957 finexdc 6958 dcfi 7040 difinfsn 7159 nnnninfeq2 7188 nninfisol 7192 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 suplocexprlemru 7779 suplocsrlemb 7866 suplocsrlem 7868 aptap 8669 supinfneg 9660 infsupneg 9661 xaddf 9910 xaddval 9911 nn0ltexp2 10780 hashunlem 10875 xrmaxiflemcl 11388 xrmaxiflemlub 11391 xrmaxltsup 11401 sumeq2 11502 fsumconst 11597 prodeq2 11700 fprodconst 11763 nninfctlemfo 12177 sgrpidmndm 13001 mhmmnd 13186 ghmcmn 13397 issrg 13461 cncnp 14398 neitx 14436 dedekindeulemlu 14775 suplociccreex 14778 dedekindicclemlu 14784 cnplimclemr 14823 limccnp2cntop 14831 logbgcd1irrap 15102 lgsval 15120 |
Copyright terms: Public domain | W3C validator |