| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp-4r | GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| simp-4r | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: simp-5r 544 fimax2gtri 7071 finexdc 7072 dcfi 7156 difinfsn 7275 nnnninfeq2 7304 nninfisol 7308 exmidfodomrlemr 7388 exmidfodomrlemrALT 7389 suplocexprlemru 7914 suplocsrlemb 8001 suplocsrlem 8003 aptap 8805 supinfneg 9798 infsupneg 9799 xaddf 10048 xaddval 10049 nn0ltexp2 10939 hashunlem 11034 swrdccatin1 11265 reuccatpfxs1 11287 xrmaxiflemcl 11764 xrmaxiflemlub 11767 xrmaxltsup 11777 sumeq2 11878 fsumconst 11973 prodeq2 12076 fprodconst 12139 nninfctlemfo 12569 prdsval 13314 sgrpidmndm 13461 mhmmnd 13661 ghmcmn 13872 issrg 13936 cncnp 14912 neitx 14950 dedekindeulemlu 15303 suplociccreex 15306 dedekindicclemlu 15312 cnplimclemr 15351 limccnp2cntop 15359 logbgcd1irrap 15652 lgsval 15691 pw1ndom3 16383 |
| Copyright terms: Public domain | W3C validator |