![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp-4r | GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
simp-4r | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 534 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
2 | 1 | adantr 276 | 1 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: simp-5r 544 fimax2gtri 6903 finexdc 6904 dcfi 6982 difinfsn 7101 nnnninfeq2 7129 nninfisol 7133 exmidfodomrlemr 7203 exmidfodomrlemrALT 7204 suplocexprlemru 7720 suplocsrlemb 7807 suplocsrlem 7809 aptap 8609 supinfneg 9597 infsupneg 9598 xaddf 9846 xaddval 9847 nn0ltexp2 10691 hashunlem 10786 xrmaxiflemcl 11255 xrmaxiflemlub 11258 xrmaxltsup 11268 sumeq2 11369 fsumconst 11464 prodeq2 11567 fprodconst 11630 sgrpidmndm 12826 mhmmnd 12985 issrg 13153 cncnp 13769 neitx 13807 dedekindeulemlu 14138 suplociccreex 14141 dedekindicclemlu 14147 cnplimclemr 14177 limccnp2cntop 14185 logbgcd1irrap 14427 lgsval 14444 |
Copyright terms: Public domain | W3C validator |