| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp-4r | GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| simp-4r | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: simp-5r 544 fimax2gtri 6971 finexdc 6972 dcfi 7056 difinfsn 7175 nnnninfeq2 7204 nninfisol 7208 exmidfodomrlemr 7283 exmidfodomrlemrALT 7284 suplocexprlemru 7805 suplocsrlemb 7892 suplocsrlem 7894 aptap 8696 supinfneg 9688 infsupneg 9689 xaddf 9938 xaddval 9939 nn0ltexp2 10820 hashunlem 10915 xrmaxiflemcl 11429 xrmaxiflemlub 11432 xrmaxltsup 11442 sumeq2 11543 fsumconst 11638 prodeq2 11741 fprodconst 11804 nninfctlemfo 12234 prdsval 12977 sgrpidmndm 13124 mhmmnd 13324 ghmcmn 13535 issrg 13599 cncnp 14574 neitx 14612 dedekindeulemlu 14965 suplociccreex 14968 dedekindicclemlu 14974 cnplimclemr 15013 limccnp2cntop 15021 logbgcd1irrap 15314 lgsval 15353 |
| Copyright terms: Public domain | W3C validator |