| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp-4r | GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| simp-4r | ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: simp-5r 544 fimax2gtri 7005 finexdc 7006 dcfi 7090 difinfsn 7209 nnnninfeq2 7238 nninfisol 7242 exmidfodomrlemr 7317 exmidfodomrlemrALT 7318 suplocexprlemru 7839 suplocsrlemb 7926 suplocsrlem 7928 aptap 8730 supinfneg 9723 infsupneg 9724 xaddf 9973 xaddval 9974 nn0ltexp2 10861 hashunlem 10956 xrmaxiflemcl 11600 xrmaxiflemlub 11603 xrmaxltsup 11613 sumeq2 11714 fsumconst 11809 prodeq2 11912 fprodconst 11975 nninfctlemfo 12405 prdsval 13149 sgrpidmndm 13296 mhmmnd 13496 ghmcmn 13707 issrg 13771 cncnp 14746 neitx 14784 dedekindeulemlu 15137 suplociccreex 15140 dedekindicclemlu 15146 cnplimclemr 15185 limccnp2cntop 15193 logbgcd1irrap 15486 lgsval 15525 |
| Copyright terms: Public domain | W3C validator |