ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcimegf GIF version

Theorem spcimegf 2884
Description: Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1 𝑥𝐴
spcimgf.2 𝑥𝜓
spcimegf.3 (𝑥 = 𝐴 → (𝜓𝜑))
Assertion
Ref Expression
spcimegf (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))

Proof of Theorem spcimegf
StepHypRef Expression
1 spcimgf.2 . . 3 𝑥𝜓
2 spcimgf.1 . . 3 𝑥𝐴
31, 2spcimegft 2881 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜑)) → (𝐴𝑉 → (𝜓 → ∃𝑥𝜑)))
4 spcimegf.3 . 2 (𝑥 = 𝐴 → (𝜓𝜑))
53, 4mpg 1497 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wnf 1506  wex 1538  wcel 2200  wnfc 2359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator