ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcgf GIF version

Theorem spcgf 2843
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
Hypotheses
Ref Expression
spcgf.1 𝑥𝐴
spcgf.2 𝑥𝜓
spcgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcgf (𝐴𝑉 → (∀𝑥𝜑𝜓))

Proof of Theorem spcgf
StepHypRef Expression
1 spcgf.2 . . 3 𝑥𝜓
2 spcgf.1 . . 3 𝑥𝐴
31, 2spcgft 2838 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉 → (∀𝑥𝜑𝜓)))
4 spcgf.3 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpg 1462 1 (𝐴𝑉 → (∀𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wnf 1471  wcel 2164  wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  spcgv  2848  rspc  2859  elabgt  2902  eusvnf  4485  mpofvex  6260
  Copyright terms: Public domain W3C validator