| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcgf | GIF version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| spcgf.1 | ⊢ Ⅎ𝑥𝐴 |
| spcgf.2 | ⊢ Ⅎ𝑥𝜓 |
| spcgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcgf | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcgf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | spcgf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 1, 2 | spcgft 2850 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓))) |
| 4 | spcgf.3 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpg 1474 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 Ⅎwnf 1483 ∈ wcel 2176 Ⅎwnfc 2335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: spcgv 2860 rspc 2871 elabgt 2914 eusvnf 4500 mpofvex 6291 gropd 15644 grstructd2dom 15645 |
| Copyright terms: Public domain | W3C validator |