| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcgf | GIF version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| spcgf.1 | ⊢ Ⅎ𝑥𝐴 |
| spcgf.2 | ⊢ Ⅎ𝑥𝜓 |
| spcgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcgf | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcgf.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | spcgf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 1, 2 | spcgft 2857 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓))) |
| 4 | spcgf.3 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpg 1475 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2178 Ⅎwnfc 2337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: spcgv 2867 rspc 2878 elabgt 2921 eusvnf 4518 mpofvex 6314 gropd 15761 grstructd2dom 15762 |
| Copyright terms: Public domain | W3C validator |