ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsbc GIF version

Theorem rspsbc 3112
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1821 and spsbc 3040. See also rspsbca 3113 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspsbc (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rspsbc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cbvralsv 2781 . 2 (∀𝑥𝐵 𝜑 ↔ ∀𝑦𝐵 [𝑦 / 𝑥]𝜑)
2 dfsbcq2 3031 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32rspcv 2903 . 2 (𝐴𝐵 → (∀𝑦𝐵 [𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
41, 3biimtrid 152 1 (𝐴𝐵 → (∀𝑥𝐵 𝜑[𝐴 / 𝑥]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  [wsb 1808  wcel 2200  wral 2508  [wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-sbc 3029
This theorem is referenced by:  rspsbca  3113  sbcth2  3117  rspcsbela  3184  riota5f  5987  riotass2  5989  fzrevral  10309  fprodcllemf  12132  ctiunctlemf  13017
  Copyright terms: Public domain W3C validator