![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspsbc | GIF version |
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 1716 and spsbc 2873. See also rspsbca 2944 and rspcsbela . (Contributed by NM, 17-Nov-2006.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
rspsbc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralsv 2623 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) | |
2 | dfsbcq2 2865 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 2 | rspcv 2740 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) |
4 | 1, 3 | syl5bi 151 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 [wsb 1703 ∀wral 2375 [wsbc 2862 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-v 2643 df-sbc 2863 |
This theorem is referenced by: rspsbca 2944 sbcth2 2948 rspcsbela 3009 riota5f 5686 riotass2 5688 fzrevral 9726 |
Copyright terms: Public domain | W3C validator |