| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssbri | GIF version | ||
| Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbri.1 | . . . 4 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 ⊆ 𝐵) |
| 3 | 2 | ssbrd 4090 | . 2 ⊢ (⊤ → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| 4 | 3 | mptru 1382 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊤wtru 1374 ⊆ wss 3167 class class class wbr 4047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 df-br 4048 |
| This theorem is referenced by: brel 4731 swoer 6655 swoord1 6656 swoord2 6657 ecopover 6727 ecopoverg 6730 endom 6861 |
| Copyright terms: Public domain | W3C validator |