Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssbri | GIF version |
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbri.1 | . . . 4 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 ⊆ 𝐵) |
3 | 2 | ssbrd 4032 | . 2 ⊢ (⊤ → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
4 | 3 | mptru 1357 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1349 ⊆ wss 3121 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-br 3990 |
This theorem is referenced by: brel 4663 swoer 6541 swoord1 6542 swoord2 6543 ecopover 6611 ecopoverg 6614 endom 6741 |
Copyright terms: Public domain | W3C validator |