| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssbri | GIF version | ||
| Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbri.1 | . . . 4 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 ⊆ 𝐵) |
| 3 | 2 | ssbrd 4105 | . 2 ⊢ (⊤ → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
| 4 | 3 | mptru 1384 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊤wtru 1376 ⊆ wss 3177 class class class wbr 4062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 df-br 4063 |
| This theorem is referenced by: brel 4748 swoer 6678 swoord1 6679 swoord2 6680 ecopover 6750 ecopoverg 6753 endom 6884 |
| Copyright terms: Public domain | W3C validator |