ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbri GIF version

Theorem ssbri 4128
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
ssbri.1 𝐴𝐵
Assertion
Ref Expression
ssbri (𝐶𝐴𝐷𝐶𝐵𝐷)

Proof of Theorem ssbri
StepHypRef Expression
1 ssbri.1 . . . 4 𝐴𝐵
21a1i 9 . . 3 (⊤ → 𝐴𝐵)
32ssbrd 4126 . 2 (⊤ → (𝐶𝐴𝐷𝐶𝐵𝐷))
43mptru 1404 1 (𝐶𝐴𝐷𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wtru 1396  wss 3197   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-br 4084
This theorem is referenced by:  brel  4771  swoer  6716  swoord1  6717  swoord2  6718  ecopover  6788  ecopoverg  6791  endom  6922
  Copyright terms: Public domain W3C validator