ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbri GIF version

Theorem ssbri 4026
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
ssbri.1 𝐴𝐵
Assertion
Ref Expression
ssbri (𝐶𝐴𝐷𝐶𝐵𝐷)

Proof of Theorem ssbri
StepHypRef Expression
1 ssbri.1 . . . 4 𝐴𝐵
21a1i 9 . . 3 (⊤ → 𝐴𝐵)
32ssbrd 4025 . 2 (⊤ → (𝐶𝐴𝐷𝐶𝐵𝐷))
43mptru 1352 1 (𝐶𝐴𝐷𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wtru 1344  wss 3116   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-br 3983
This theorem is referenced by:  brel  4656  swoer  6529  swoord1  6530  swoord2  6531  ecopover  6599  ecopoverg  6602  endom  6729
  Copyright terms: Public domain W3C validator