ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssbri GIF version

Theorem ssbri 4092
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
ssbri.1 𝐴𝐵
Assertion
Ref Expression
ssbri (𝐶𝐴𝐷𝐶𝐵𝐷)

Proof of Theorem ssbri
StepHypRef Expression
1 ssbri.1 . . . 4 𝐴𝐵
21a1i 9 . . 3 (⊤ → 𝐴𝐵)
32ssbrd 4090 . 2 (⊤ → (𝐶𝐴𝐷𝐶𝐵𝐷))
43mptru 1382 1 (𝐶𝐴𝐷𝐶𝐵𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4  wtru 1374  wss 3167   class class class wbr 4047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3173  df-ss 3180  df-br 4048
This theorem is referenced by:  brel  4731  swoer  6655  swoord1  6656  swoord2  6657  ecopover  6727  ecopoverg  6730  endom  6861
  Copyright terms: Public domain W3C validator