![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssbri | GIF version |
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbri.1 | . . . 4 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 ⊆ 𝐵) |
3 | 2 | ssbrd 4072 | . 2 ⊢ (⊤ → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
4 | 3 | mptru 1373 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1365 ⊆ wss 3153 class class class wbr 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-br 4030 |
This theorem is referenced by: brel 4711 swoer 6615 swoord1 6616 swoord2 6617 ecopover 6687 ecopoverg 6690 endom 6817 |
Copyright terms: Public domain | W3C validator |