Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssbri | GIF version |
Description: Inference from a subclass relationship of binary relations. (Contributed by NM, 28-Mar-2007.) (Revised by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
ssbri.1 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
ssbri | ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbri.1 | . . . 4 ⊢ 𝐴 ⊆ 𝐵 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 ⊆ 𝐵) |
3 | 2 | ssbrd 4025 | . 2 ⊢ (⊤ → (𝐶𝐴𝐷 → 𝐶𝐵𝐷)) |
4 | 3 | mptru 1352 | 1 ⊢ (𝐶𝐴𝐷 → 𝐶𝐵𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1344 ⊆ wss 3116 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-br 3983 |
This theorem is referenced by: brel 4656 swoer 6529 swoord1 6530 swoord2 6531 ecopover 6599 ecopoverg 6602 endom 6729 |
Copyright terms: Public domain | W3C validator |