Step | Hyp | Ref
| Expression |
1 | | eleq1w 2218 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
2 | 1 | dcbid 824 |
. . . 4
⊢ (𝑥 = 𝑧 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑧 ∈ 𝐴)) |
3 | 2 | cbvralvw 2684 |
. . 3
⊢
(∀𝑥 ∈
𝑋 DECID
𝑥 ∈ 𝐴 ↔ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) |
4 | | eleq1w 2218 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
5 | 4 | ifbid 3527 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → if(𝑧 ∈ 𝐴, 1o, ∅) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
6 | 5 | cbvmptv 4063 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅)) |
7 | 6 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
8 | 3 | biimpri 132 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑋 DECID
𝑧 ∈ 𝐴 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) |
9 | 8 | adantl 275 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) |
10 | 7, 9 | bj-charfundc 13480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅))) |
11 | 10 | ex 114 |
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴 → ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)))) |
12 | | 2on 6375 |
. . . . . . . . . . 11
⊢
2o ∈ On |
13 | 12 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → 2o ∈
On) |
14 | | bj-charfunbi.ex |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
15 | 13, 14 | elmapd 6610 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋) ↔ (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o)) |
16 | 15 | biimprd 157 |
. . . . . . . 8
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋))) |
17 | 16 | adantrd 277 |
. . . . . . 7
⊢ (𝜑 → (((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)) → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋))) |
18 | 11, 17 | syld 45 |
. . . . . 6
⊢ (𝜑 → (∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴 → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋))) |
19 | 18 | imp 123 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋)) |
20 | | fveq1 5470 |
. . . . . . . . 9
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) → (𝑓‘𝑥) = ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥)) |
21 | 20 | eqeq1d 2166 |
. . . . . . . 8
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) → ((𝑓‘𝑥) = 1o ↔ ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) =
1o)) |
22 | 21 | ralbidv 2457 |
. . . . . . 7
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) →
(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) =
1o)) |
23 | 20 | eqeq1d 2166 |
. . . . . . . 8
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) → ((𝑓‘𝑥) = ∅ ↔ ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)) |
24 | 23 | ralbidv 2457 |
. . . . . . 7
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) →
(∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅ ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)) |
25 | 22, 24 | anbi12d 465 |
. . . . . 6
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) →
((∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅))) |
26 | 25 | adantl 275 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))) →
((∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅))) |
27 | 10 | simprd 113 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)) |
28 | 19, 26, 27 | rspcedvd 2822 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) |
29 | 28 | ex 114 |
. . 3
⊢ (𝜑 → (∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴 → ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅))) |
30 | 3, 29 | syl5bi 151 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴 → ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅))) |
31 | | omex 4555 |
. . . . . . . . 9
⊢ ω
∈ V |
32 | | 2ssom 13474 |
. . . . . . . . 9
⊢
2o ⊆ ω |
33 | | mapss 6639 |
. . . . . . . . 9
⊢ ((ω
∈ V ∧ 2o ⊆ ω) → (2o
↑𝑚 𝑋) ⊆ (ω
↑𝑚 𝑋)) |
34 | 31, 32, 33 | mp2an 423 |
. . . . . . . 8
⊢
(2o ↑𝑚 𝑋) ⊆ (ω
↑𝑚 𝑋) |
35 | | fveq1 5470 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘𝑥) = (𝑔‘𝑥)) |
36 | 35 | eqeq1d 2166 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑥) = 1o ↔ (𝑔‘𝑥) = 1o)) |
37 | 36 | ralbidv 2457 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o)) |
38 | 35 | eqeq1d 2166 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑥) = ∅ ↔ (𝑔‘𝑥) = ∅)) |
39 | 38 | ralbidv 2457 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅ ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅)) |
40 | 37, 39 | anbi12d 465 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅))) |
41 | 40 | cbvrexvw 2685 |
. . . . . . . . 9
⊢
(∃𝑓 ∈
(2o ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ↔ ∃𝑔 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅)) |
42 | | fveqeq2 5480 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑔‘𝑥) = 1o ↔ (𝑔‘𝑦) = 1o)) |
43 | 42 | cbvralvw 2684 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ↔ ∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) = 1o) |
44 | | 1n0 6382 |
. . . . . . . . . . . . . . . 16
⊢
1o ≠ ∅ |
45 | 44 | neii 2329 |
. . . . . . . . . . . . . . 15
⊢ ¬
1o = ∅ |
46 | | eqeq1 2164 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑦) = 1o → ((𝑔‘𝑦) = ∅ ↔ 1o =
∅)) |
47 | 45, 46 | mtbiri 665 |
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑦) = 1o → ¬ (𝑔‘𝑦) = ∅) |
48 | 47 | neqned 2334 |
. . . . . . . . . . . . 13
⊢ ((𝑔‘𝑦) = 1o → (𝑔‘𝑦) ≠ ∅) |
49 | 48 | ralimi 2520 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(𝑋 ∩ 𝐴)(𝑔‘𝑦) = 1o → ∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅) |
50 | 43, 49 | sylbi 120 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o → ∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅) |
51 | | fveqeq2 5480 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑔‘𝑥) = ∅ ↔ (𝑔‘𝑦) = ∅)) |
52 | 51 | cbvralvw 2684 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅ ↔ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅) |
53 | 52 | biimpi 119 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
(𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅ → ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅) |
54 | 50, 53 | anim12i 336 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅) → (∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) |
55 | 54 | reximi 2554 |
. . . . . . . . 9
⊢
(∃𝑔 ∈
(2o ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅) → ∃𝑔 ∈ (2o
↑𝑚 𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) |
56 | 41, 55 | sylbi 120 |
. . . . . . . 8
⊢
(∃𝑓 ∈
(2o ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∃𝑔 ∈ (2o
↑𝑚 𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) |
57 | | ssrexv 3193 |
. . . . . . . 8
⊢
((2o ↑𝑚 𝑋) ⊆ (ω
↑𝑚 𝑋) → (∃𝑔 ∈ (2o
↑𝑚 𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅) → ∃𝑔 ∈ (ω ↑𝑚
𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅))) |
58 | 34, 56, 57 | mpsyl 65 |
. . . . . . 7
⊢
(∃𝑓 ∈
(2o ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∃𝑔 ∈ (ω ↑𝑚
𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) |
59 | 58 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) → ∃𝑔 ∈ (ω
↑𝑚 𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) |
60 | 59 | bj-charfunr 13482 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) → ∀𝑦 ∈ 𝑋 DECID ¬ 𝑦 ∈ 𝐴) |
61 | 60 | ex 114 |
. . . 4
⊢ (𝜑 → (∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∀𝑦 ∈ 𝑋 DECID ¬ 𝑦 ∈ 𝐴)) |
62 | | eleq1w 2218 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
63 | 62 | notbid 657 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑦 ∈ 𝐴)) |
64 | 63 | dcbid 824 |
. . . . 5
⊢ (𝑥 = 𝑦 → (DECID ¬ 𝑥 ∈ 𝐴 ↔ DECID ¬ 𝑦 ∈ 𝐴)) |
65 | 64 | cbvralvw 2684 |
. . . 4
⊢
(∀𝑥 ∈
𝑋 DECID
¬ 𝑥 ∈ 𝐴 ↔ ∀𝑦 ∈ 𝑋 DECID ¬ 𝑦 ∈ 𝐴) |
66 | 61, 65 | syl6ibr 161 |
. . 3
⊢ (𝜑 → (∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∀𝑥 ∈ 𝑋 DECID ¬ 𝑥 ∈ 𝐴)) |
67 | | bj-charfunbi.st |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 STAB 𝑥 ∈ 𝐴) |
68 | 67 | r19.21bi 2545 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → STAB 𝑥 ∈ 𝐴) |
69 | | stdcn 833 |
. . . . 5
⊢
(STAB 𝑥 ∈ 𝐴 ↔ (DECID ¬ 𝑥 ∈ 𝐴 → DECID 𝑥 ∈ 𝐴)) |
70 | 68, 69 | sylib 121 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (DECID ¬ 𝑥 ∈ 𝐴 → DECID 𝑥 ∈ 𝐴)) |
71 | 70 | ralimdva 2524 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 DECID ¬ 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴)) |
72 | 66, 71 | syld 45 |
. 2
⊢ (𝜑 → (∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴)) |
73 | 30, 72 | impbid 128 |
1
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴 ↔ ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅))) |