Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunbi GIF version

Theorem bj-charfunbi 15303
Description: In an ambient set 𝑋, if membership in 𝐴 is stable, then it is decidable if and only if 𝐴 has a characteristic function.

This characterization can be applied to singletons when the set 𝑋 has stable equality, which is the case as soon as it has a tight apartness relation. (Contributed by BJ, 6-Aug-2024.)

Hypotheses
Ref Expression
bj-charfunbi.ex (𝜑𝑋𝑉)
bj-charfunbi.st (𝜑 → ∀𝑥𝑋 STAB 𝑥𝐴)
Assertion
Ref Expression
bj-charfunbi (𝜑 → (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑋,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓)

Proof of Theorem bj-charfunbi
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2254 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21dcbid 839 . . . 4 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
32cbvralvw 2730 . . 3 (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∀𝑧𝑋 DECID 𝑧𝐴)
4 eleq1w 2254 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
54ifbid 3578 . . . . . . . . . . 11 (𝑧 = 𝑥 → if(𝑧𝐴, 1o, ∅) = if(𝑥𝐴, 1o, ∅))
65cbvmptv 4125 . . . . . . . . . 10 (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅))
76a1i 9 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
83biimpri 133 . . . . . . . . . 10 (∀𝑧𝑋 DECID 𝑧𝐴 → ∀𝑥𝑋 DECID 𝑥𝐴)
98adantl 277 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → ∀𝑥𝑋 DECID 𝑥𝐴)
107, 9bj-charfundc 15300 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅)))
1110ex 115 . . . . . . 7 (𝜑 → (∀𝑧𝑋 DECID 𝑧𝐴 → ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅))))
12 2on 6478 . . . . . . . . . . 11 2o ∈ On
1312a1i 9 . . . . . . . . . 10 (𝜑 → 2o ∈ On)
14 bj-charfunbi.ex . . . . . . . . . 10 (𝜑𝑋𝑉)
1513, 14elmapd 6716 . . . . . . . . 9 (𝜑 → ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋) ↔ (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o))
1615biimprd 158 . . . . . . . 8 (𝜑 → ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋)))
1716adantrd 279 . . . . . . 7 (𝜑 → (((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅)) → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋)))
1811, 17syld 45 . . . . . 6 (𝜑 → (∀𝑧𝑋 DECID 𝑧𝐴 → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋)))
1918imp 124 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋))
20 fveq1 5553 . . . . . . . . 9 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → (𝑓𝑥) = ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥))
2120eqeq1d 2202 . . . . . . . 8 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → ((𝑓𝑥) = 1o ↔ ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o))
2221ralbidv 2494 . . . . . . 7 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ↔ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o))
2320eqeq1d 2202 . . . . . . . 8 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → ((𝑓𝑥) = ∅ ↔ ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅))
2423ralbidv 2494 . . . . . . 7 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ ↔ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅))
2522, 24anbi12d 473 . . . . . 6 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅)))
2625adantl 277 . . . . 5 (((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) ∧ 𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))) → ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅)))
2710simprd 114 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅))
2819, 26, 27rspcedvd 2870 . . . 4 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))
2928ex 115 . . 3 (𝜑 → (∀𝑧𝑋 DECID 𝑧𝐴 → ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)))
303, 29biimtrid 152 . 2 (𝜑 → (∀𝑥𝑋 DECID 𝑥𝐴 → ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)))
31 omex 4625 . . . . . . . . 9 ω ∈ V
32 2ssom 6577 . . . . . . . . 9 2o ⊆ ω
33 mapss 6745 . . . . . . . . 9 ((ω ∈ V ∧ 2o ⊆ ω) → (2o𝑚 𝑋) ⊆ (ω ↑𝑚 𝑋))
3431, 32, 33mp2an 426 . . . . . . . 8 (2o𝑚 𝑋) ⊆ (ω ↑𝑚 𝑋)
35 fveq1 5553 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
3635eqeq1d 2202 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓𝑥) = 1o ↔ (𝑔𝑥) = 1o))
3736ralbidv 2494 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ↔ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o))
3835eqeq1d 2202 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓𝑥) = ∅ ↔ (𝑔𝑥) = ∅))
3938ralbidv 2494 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ ↔ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅))
4037, 39anbi12d 473 . . . . . . . . . 10 (𝑓 = 𝑔 → ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅)))
4140cbvrexvw 2731 . . . . . . . . 9 (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ↔ ∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅))
42 fveqeq2 5563 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑔𝑥) = 1o ↔ (𝑔𝑦) = 1o))
4342cbvralvw 2730 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ↔ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = 1o)
44 1n0 6485 . . . . . . . . . . . . . . . 16 1o ≠ ∅
4544neii 2366 . . . . . . . . . . . . . . 15 ¬ 1o = ∅
46 eqeq1 2200 . . . . . . . . . . . . . . 15 ((𝑔𝑦) = 1o → ((𝑔𝑦) = ∅ ↔ 1o = ∅))
4745, 46mtbiri 676 . . . . . . . . . . . . . 14 ((𝑔𝑦) = 1o → ¬ (𝑔𝑦) = ∅)
4847neqned 2371 . . . . . . . . . . . . 13 ((𝑔𝑦) = 1o → (𝑔𝑦) ≠ ∅)
4948ralimi 2557 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = 1o → ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅)
5043, 49sylbi 121 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o → ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅)
51 fveqeq2 5563 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑔𝑥) = ∅ ↔ (𝑔𝑦) = ∅))
5251cbvralvw 2730 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅ ↔ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅)
5352biimpi 120 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅ → ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅)
5450, 53anim12i 338 . . . . . . . . . 10 ((∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅) → (∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
5554reximi 2591 . . . . . . . . 9 (∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅) → ∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
5641, 55sylbi 121 . . . . . . . 8 (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
57 ssrexv 3244 . . . . . . . 8 ((2o𝑚 𝑋) ⊆ (ω ↑𝑚 𝑋) → (∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅) → ∃𝑔 ∈ (ω ↑𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅)))
5834, 56, 57mpsyl 65 . . . . . . 7 (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∃𝑔 ∈ (ω ↑𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
5958adantl 277 . . . . . 6 ((𝜑 ∧ ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → ∃𝑔 ∈ (ω ↑𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
6059bj-charfunr 15302 . . . . 5 ((𝜑 ∧ ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → ∀𝑦𝑋 DECID ¬ 𝑦𝐴)
6160ex 115 . . . 4 (𝜑 → (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∀𝑦𝑋 DECID ¬ 𝑦𝐴))
62 eleq1w 2254 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
6362notbid 668 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥𝐴 ↔ ¬ 𝑦𝐴))
6463dcbid 839 . . . . 5 (𝑥 = 𝑦 → (DECID ¬ 𝑥𝐴DECID ¬ 𝑦𝐴))
6564cbvralvw 2730 . . . 4 (∀𝑥𝑋 DECID ¬ 𝑥𝐴 ↔ ∀𝑦𝑋 DECID ¬ 𝑦𝐴)
6661, 65imbitrrdi 162 . . 3 (𝜑 → (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∀𝑥𝑋 DECID ¬ 𝑥𝐴))
67 bj-charfunbi.st . . . . . 6 (𝜑 → ∀𝑥𝑋 STAB 𝑥𝐴)
6867r19.21bi 2582 . . . . 5 ((𝜑𝑥𝑋) → STAB 𝑥𝐴)
69 stdcn 848 . . . . 5 (STAB 𝑥𝐴 ↔ (DECID ¬ 𝑥𝐴DECID 𝑥𝐴))
7068, 69sylib 122 . . . 4 ((𝜑𝑥𝑋) → (DECID ¬ 𝑥𝐴DECID 𝑥𝐴))
7170ralimdva 2561 . . 3 (𝜑 → (∀𝑥𝑋 DECID ¬ 𝑥𝐴 → ∀𝑥𝑋 DECID 𝑥𝐴))
7266, 71syld 45 . 2 (𝜑 → (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∀𝑥𝑋 DECID 𝑥𝐴))
7330, 72impbid 129 1 (𝜑 → (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  STAB wstab 831  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  Vcvv 2760  cdif 3150  cin 3152  wss 3153  c0 3446  ifcif 3557  cmpt 4090  Oncon0 4394  ωcom 4622  wf 5250  cfv 5254  (class class class)co 5918  1oc1o 6462  2oc2o 6463  𝑚 cmap 6702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator