Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfunbi GIF version

Theorem bj-charfunbi 15457
Description: In an ambient set 𝑋, if membership in 𝐴 is stable, then it is decidable if and only if 𝐴 has a characteristic function.

This characterization can be applied to singletons when the set 𝑋 has stable equality, which is the case as soon as it has a tight apartness relation. (Contributed by BJ, 6-Aug-2024.)

Hypotheses
Ref Expression
bj-charfunbi.ex (𝜑𝑋𝑉)
bj-charfunbi.st (𝜑 → ∀𝑥𝑋 STAB 𝑥𝐴)
Assertion
Ref Expression
bj-charfunbi (𝜑 → (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)))
Distinct variable groups:   𝐴,𝑓,𝑥   𝑓,𝑋,𝑥   𝜑,𝑓,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓)

Proof of Theorem bj-charfunbi
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2257 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
21dcbid 839 . . . 4 (𝑥 = 𝑧 → (DECID 𝑥𝐴DECID 𝑧𝐴))
32cbvralvw 2733 . . 3 (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∀𝑧𝑋 DECID 𝑧𝐴)
4 eleq1w 2257 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
54ifbid 3582 . . . . . . . . . . 11 (𝑧 = 𝑥 → if(𝑧𝐴, 1o, ∅) = if(𝑥𝐴, 1o, ∅))
65cbvmptv 4129 . . . . . . . . . 10 (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅))
76a1i 9 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
83biimpri 133 . . . . . . . . . 10 (∀𝑧𝑋 DECID 𝑧𝐴 → ∀𝑥𝑋 DECID 𝑥𝐴)
98adantl 277 . . . . . . . . 9 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → ∀𝑥𝑋 DECID 𝑥𝐴)
107, 9bj-charfundc 15454 . . . . . . . 8 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅)))
1110ex 115 . . . . . . 7 (𝜑 → (∀𝑧𝑋 DECID 𝑧𝐴 → ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅))))
12 2on 6483 . . . . . . . . . . 11 2o ∈ On
1312a1i 9 . . . . . . . . . 10 (𝜑 → 2o ∈ On)
14 bj-charfunbi.ex . . . . . . . . . 10 (𝜑𝑋𝑉)
1513, 14elmapd 6721 . . . . . . . . 9 (𝜑 → ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋) ↔ (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o))
1615biimprd 158 . . . . . . . 8 (𝜑 → ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋)))
1716adantrd 279 . . . . . . 7 (𝜑 → (((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅)) → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋)))
1811, 17syld 45 . . . . . 6 (𝜑 → (∀𝑧𝑋 DECID 𝑧𝐴 → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋)))
1918imp 124 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) ∈ (2o𝑚 𝑋))
20 fveq1 5557 . . . . . . . . 9 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → (𝑓𝑥) = ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥))
2120eqeq1d 2205 . . . . . . . 8 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → ((𝑓𝑥) = 1o ↔ ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o))
2221ralbidv 2497 . . . . . . 7 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ↔ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o))
2320eqeq1d 2205 . . . . . . . 8 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → ((𝑓𝑥) = ∅ ↔ ((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅))
2423ralbidv 2497 . . . . . . 7 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ ↔ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅))
2522, 24anbi12d 473 . . . . . 6 (𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅)) → ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅)))
2625adantl 277 . . . . 5 (((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) ∧ 𝑓 = (𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))) → ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅)))
2710simprd 114 . . . . 5 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → (∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)((𝑧𝑋 ↦ if(𝑧𝐴, 1o, ∅))‘𝑥) = ∅))
2819, 26, 27rspcedvd 2874 . . . 4 ((𝜑 ∧ ∀𝑧𝑋 DECID 𝑧𝐴) → ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅))
2928ex 115 . . 3 (𝜑 → (∀𝑧𝑋 DECID 𝑧𝐴 → ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)))
303, 29biimtrid 152 . 2 (𝜑 → (∀𝑥𝑋 DECID 𝑥𝐴 → ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)))
31 omex 4629 . . . . . . . . 9 ω ∈ V
32 2ssom 6582 . . . . . . . . 9 2o ⊆ ω
33 mapss 6750 . . . . . . . . 9 ((ω ∈ V ∧ 2o ⊆ ω) → (2o𝑚 𝑋) ⊆ (ω ↑𝑚 𝑋))
3431, 32, 33mp2an 426 . . . . . . . 8 (2o𝑚 𝑋) ⊆ (ω ↑𝑚 𝑋)
35 fveq1 5557 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → (𝑓𝑥) = (𝑔𝑥))
3635eqeq1d 2205 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓𝑥) = 1o ↔ (𝑔𝑥) = 1o))
3736ralbidv 2497 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ↔ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o))
3835eqeq1d 2205 . . . . . . . . . . . 12 (𝑓 = 𝑔 → ((𝑓𝑥) = ∅ ↔ (𝑔𝑥) = ∅))
3938ralbidv 2497 . . . . . . . . . . 11 (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅ ↔ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅))
4037, 39anbi12d 473 . . . . . . . . . 10 (𝑓 = 𝑔 → ((∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅)))
4140cbvrexvw 2734 . . . . . . . . 9 (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) ↔ ∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅))
42 fveqeq2 5567 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑔𝑥) = 1o ↔ (𝑔𝑦) = 1o))
4342cbvralvw 2733 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ↔ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = 1o)
44 1n0 6490 . . . . . . . . . . . . . . . 16 1o ≠ ∅
4544neii 2369 . . . . . . . . . . . . . . 15 ¬ 1o = ∅
46 eqeq1 2203 . . . . . . . . . . . . . . 15 ((𝑔𝑦) = 1o → ((𝑔𝑦) = ∅ ↔ 1o = ∅))
4745, 46mtbiri 676 . . . . . . . . . . . . . 14 ((𝑔𝑦) = 1o → ¬ (𝑔𝑦) = ∅)
4847neqned 2374 . . . . . . . . . . . . 13 ((𝑔𝑦) = 1o → (𝑔𝑦) ≠ ∅)
4948ralimi 2560 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = 1o → ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅)
5043, 49sylbi 121 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o → ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅)
51 fveqeq2 5567 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑔𝑥) = ∅ ↔ (𝑔𝑦) = ∅))
5251cbvralvw 2733 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅ ↔ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅)
5352biimpi 120 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅ → ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅)
5450, 53anim12i 338 . . . . . . . . . 10 ((∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅) → (∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
5554reximi 2594 . . . . . . . . 9 (∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑔𝑥) = ∅) → ∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
5641, 55sylbi 121 . . . . . . . 8 (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
57 ssrexv 3248 . . . . . . . 8 ((2o𝑚 𝑋) ⊆ (ω ↑𝑚 𝑋) → (∃𝑔 ∈ (2o𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅) → ∃𝑔 ∈ (ω ↑𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅)))
5834, 56, 57mpsyl 65 . . . . . . 7 (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∃𝑔 ∈ (ω ↑𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
5958adantl 277 . . . . . 6 ((𝜑 ∧ ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → ∃𝑔 ∈ (ω ↑𝑚 𝑋)(∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋𝐴)(𝑔𝑦) = ∅))
6059bj-charfunr 15456 . . . . 5 ((𝜑 ∧ ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)) → ∀𝑦𝑋 DECID ¬ 𝑦𝐴)
6160ex 115 . . . 4 (𝜑 → (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∀𝑦𝑋 DECID ¬ 𝑦𝐴))
62 eleq1w 2257 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
6362notbid 668 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥𝐴 ↔ ¬ 𝑦𝐴))
6463dcbid 839 . . . . 5 (𝑥 = 𝑦 → (DECID ¬ 𝑥𝐴DECID ¬ 𝑦𝐴))
6564cbvralvw 2733 . . . 4 (∀𝑥𝑋 DECID ¬ 𝑥𝐴 ↔ ∀𝑦𝑋 DECID ¬ 𝑦𝐴)
6661, 65imbitrrdi 162 . . 3 (𝜑 → (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∀𝑥𝑋 DECID ¬ 𝑥𝐴))
67 bj-charfunbi.st . . . . . 6 (𝜑 → ∀𝑥𝑋 STAB 𝑥𝐴)
6867r19.21bi 2585 . . . . 5 ((𝜑𝑥𝑋) → STAB 𝑥𝐴)
69 stdcn 848 . . . . 5 (STAB 𝑥𝐴 ↔ (DECID ¬ 𝑥𝐴DECID 𝑥𝐴))
7068, 69sylib 122 . . . 4 ((𝜑𝑥𝑋) → (DECID ¬ 𝑥𝐴DECID 𝑥𝐴))
7170ralimdva 2564 . . 3 (𝜑 → (∀𝑥𝑋 DECID ¬ 𝑥𝐴 → ∀𝑥𝑋 DECID 𝑥𝐴))
7266, 71syld 45 . 2 (𝜑 → (∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅) → ∀𝑥𝑋 DECID 𝑥𝐴))
7330, 72impbid 129 1 (𝜑 → (∀𝑥𝑋 DECID 𝑥𝐴 ↔ ∃𝑓 ∈ (2o𝑚 𝑋)(∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝑓𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  STAB wstab 831  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  Vcvv 2763  cdif 3154  cin 3156  wss 3157  c0 3450  ifcif 3561  cmpt 4094  Oncon0 4398  ωcom 4626  wf 5254  cfv 5258  (class class class)co 5922  1oc1o 6467  2oc2o 6468  𝑚 cmap 6707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-map 6709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator