| Step | Hyp | Ref
 | Expression | 
| 1 |   | eleq1w 2257 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | 
| 2 | 1 | dcbid 839 | 
. . . 4
⊢ (𝑥 = 𝑧 → (DECID 𝑥 ∈ 𝐴 ↔ DECID 𝑧 ∈ 𝐴)) | 
| 3 | 2 | cbvralvw 2733 | 
. . 3
⊢
(∀𝑥 ∈
𝑋 DECID
𝑥 ∈ 𝐴 ↔ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) | 
| 4 |   | eleq1w 2257 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | 
| 5 | 4 | ifbid 3582 | 
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → if(𝑧 ∈ 𝐴, 1o, ∅) = if(𝑥 ∈ 𝐴, 1o, ∅)) | 
| 6 | 5 | cbvmptv 4129 | 
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅)) | 
| 7 | 6 | a1i 9 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) | 
| 8 | 3 | biimpri 133 | 
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑋 DECID
𝑧 ∈ 𝐴 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) | 
| 9 | 8 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) | 
| 10 | 7, 9 | bj-charfundc 15454 | 
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅))) | 
| 11 | 10 | ex 115 | 
. . . . . . 7
⊢ (𝜑 → (∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴 → ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)))) | 
| 12 |   | 2on 6483 | 
. . . . . . . . . . 11
⊢
2o ∈ On | 
| 13 | 12 | a1i 9 | 
. . . . . . . . . 10
⊢ (𝜑 → 2o ∈
On) | 
| 14 |   | bj-charfunbi.ex | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| 15 | 13, 14 | elmapd 6721 | 
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋) ↔ (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o)) | 
| 16 | 15 | biimprd 158 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋))) | 
| 17 | 16 | adantrd 279 | 
. . . . . . 7
⊢ (𝜑 → (((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)):𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)) → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋))) | 
| 18 | 11, 17 | syld 45 | 
. . . . . 6
⊢ (𝜑 → (∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴 → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋))) | 
| 19 | 18 | imp 124 | 
. . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) ∈
(2o ↑𝑚 𝑋)) | 
| 20 |   | fveq1 5557 | 
. . . . . . . . 9
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) → (𝑓‘𝑥) = ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥)) | 
| 21 | 20 | eqeq1d 2205 | 
. . . . . . . 8
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) → ((𝑓‘𝑥) = 1o ↔ ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) =
1o)) | 
| 22 | 21 | ralbidv 2497 | 
. . . . . . 7
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) →
(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) =
1o)) | 
| 23 | 20 | eqeq1d 2205 | 
. . . . . . . 8
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) → ((𝑓‘𝑥) = ∅ ↔ ((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)) | 
| 24 | 23 | ralbidv 2497 | 
. . . . . . 7
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) →
(∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅ ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)) | 
| 25 | 22, 24 | anbi12d 473 | 
. . . . . 6
⊢ (𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅)) →
((∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅))) | 
| 26 | 25 | adantl 277 | 
. . . . 5
⊢ (((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) ∧ 𝑓 = (𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))) →
((∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅))) | 
| 27 | 10 | simprd 114 | 
. . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → (∀𝑥 ∈ (𝑋 ∩ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = 1o ∧
∀𝑥 ∈ (𝑋 ∖ 𝐴)((𝑧 ∈ 𝑋 ↦ if(𝑧 ∈ 𝐴, 1o, ∅))‘𝑥) = ∅)) | 
| 28 | 19, 26, 27 | rspcedvd 2874 | 
. . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴) → ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) | 
| 29 | 28 | ex 115 | 
. . 3
⊢ (𝜑 → (∀𝑧 ∈ 𝑋 DECID 𝑧 ∈ 𝐴 → ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅))) | 
| 30 | 3, 29 | biimtrid 152 | 
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴 → ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅))) | 
| 31 |   | omex 4629 | 
. . . . . . . . 9
⊢ ω
∈ V | 
| 32 |   | 2ssom 6582 | 
. . . . . . . . 9
⊢
2o ⊆ ω | 
| 33 |   | mapss 6750 | 
. . . . . . . . 9
⊢ ((ω
∈ V ∧ 2o ⊆ ω) → (2o
↑𝑚 𝑋) ⊆ (ω
↑𝑚 𝑋)) | 
| 34 | 31, 32, 33 | mp2an 426 | 
. . . . . . . 8
⊢
(2o ↑𝑚 𝑋) ⊆ (ω
↑𝑚 𝑋) | 
| 35 |   | fveq1 5557 | 
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → (𝑓‘𝑥) = (𝑔‘𝑥)) | 
| 36 | 35 | eqeq1d 2205 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑥) = 1o ↔ (𝑔‘𝑥) = 1o)) | 
| 37 | 36 | ralbidv 2497 | 
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o)) | 
| 38 | 35 | eqeq1d 2205 | 
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑥) = ∅ ↔ (𝑔‘𝑥) = ∅)) | 
| 39 | 38 | ralbidv 2497 | 
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅ ↔ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅)) | 
| 40 | 37, 39 | anbi12d 473 | 
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ↔ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅))) | 
| 41 | 40 | cbvrexvw 2734 | 
. . . . . . . . 9
⊢
(∃𝑓 ∈
(2o ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) ↔ ∃𝑔 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅)) | 
| 42 |   | fveqeq2 5567 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑔‘𝑥) = 1o ↔ (𝑔‘𝑦) = 1o)) | 
| 43 | 42 | cbvralvw 2733 | 
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ↔ ∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) = 1o) | 
| 44 |   | 1n0 6490 | 
. . . . . . . . . . . . . . . 16
⊢
1o ≠ ∅ | 
| 45 | 44 | neii 2369 | 
. . . . . . . . . . . . . . 15
⊢  ¬
1o = ∅ | 
| 46 |   | eqeq1 2203 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑔‘𝑦) = 1o → ((𝑔‘𝑦) = ∅ ↔ 1o =
∅)) | 
| 47 | 45, 46 | mtbiri 676 | 
. . . . . . . . . . . . . 14
⊢ ((𝑔‘𝑦) = 1o → ¬ (𝑔‘𝑦) = ∅) | 
| 48 | 47 | neqned 2374 | 
. . . . . . . . . . . . 13
⊢ ((𝑔‘𝑦) = 1o → (𝑔‘𝑦) ≠ ∅) | 
| 49 | 48 | ralimi 2560 | 
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(𝑋 ∩ 𝐴)(𝑔‘𝑦) = 1o → ∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅) | 
| 50 | 43, 49 | sylbi 121 | 
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o → ∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅) | 
| 51 |   | fveqeq2 5567 | 
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑔‘𝑥) = ∅ ↔ (𝑔‘𝑦) = ∅)) | 
| 52 | 51 | cbvralvw 2733 | 
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅ ↔ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅) | 
| 53 | 52 | biimpi 120 | 
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
(𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅ → ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅) | 
| 54 | 50, 53 | anim12i 338 | 
. . . . . . . . . 10
⊢
((∀𝑥 ∈
(𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅) → (∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) | 
| 55 | 54 | reximi 2594 | 
. . . . . . . . 9
⊢
(∃𝑔 ∈
(2o ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑥) = ∅) → ∃𝑔 ∈ (2o
↑𝑚 𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) | 
| 56 | 41, 55 | sylbi 121 | 
. . . . . . . 8
⊢
(∃𝑓 ∈
(2o ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∃𝑔 ∈ (2o
↑𝑚 𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) | 
| 57 |   | ssrexv 3248 | 
. . . . . . . 8
⊢
((2o ↑𝑚 𝑋) ⊆ (ω
↑𝑚 𝑋) → (∃𝑔 ∈ (2o
↑𝑚 𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅) → ∃𝑔 ∈ (ω ↑𝑚
𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅))) | 
| 58 | 34, 56, 57 | mpsyl 65 | 
. . . . . . 7
⊢
(∃𝑓 ∈
(2o ↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∃𝑔 ∈ (ω ↑𝑚
𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) | 
| 59 | 58 | adantl 277 | 
. . . . . 6
⊢ ((𝜑 ∧ ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) → ∃𝑔 ∈ (ω
↑𝑚 𝑋)(∀𝑦 ∈ (𝑋 ∩ 𝐴)(𝑔‘𝑦) ≠ ∅ ∧ ∀𝑦 ∈ (𝑋 ∖ 𝐴)(𝑔‘𝑦) = ∅)) | 
| 60 | 59 | bj-charfunr 15456 | 
. . . . 5
⊢ ((𝜑 ∧ ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅)) → ∀𝑦 ∈ 𝑋 DECID ¬ 𝑦 ∈ 𝐴) | 
| 61 | 60 | ex 115 | 
. . . 4
⊢ (𝜑 → (∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∀𝑦 ∈ 𝑋 DECID ¬ 𝑦 ∈ 𝐴)) | 
| 62 |   | eleq1w 2257 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 63 | 62 | notbid 668 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝐴 ↔ ¬ 𝑦 ∈ 𝐴)) | 
| 64 | 63 | dcbid 839 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (DECID ¬ 𝑥 ∈ 𝐴 ↔ DECID ¬ 𝑦 ∈ 𝐴)) | 
| 65 | 64 | cbvralvw 2733 | 
. . . 4
⊢
(∀𝑥 ∈
𝑋 DECID
¬ 𝑥 ∈ 𝐴 ↔ ∀𝑦 ∈ 𝑋 DECID ¬ 𝑦 ∈ 𝐴) | 
| 66 | 61, 65 | imbitrrdi 162 | 
. . 3
⊢ (𝜑 → (∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∀𝑥 ∈ 𝑋 DECID ¬ 𝑥 ∈ 𝐴)) | 
| 67 |   | bj-charfunbi.st | 
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 STAB 𝑥 ∈ 𝐴) | 
| 68 | 67 | r19.21bi 2585 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → STAB 𝑥 ∈ 𝐴) | 
| 69 |   | stdcn 848 | 
. . . . 5
⊢
(STAB 𝑥 ∈ 𝐴 ↔ (DECID ¬ 𝑥 ∈ 𝐴 → DECID 𝑥 ∈ 𝐴)) | 
| 70 | 68, 69 | sylib 122 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (DECID ¬ 𝑥 ∈ 𝐴 → DECID 𝑥 ∈ 𝐴)) | 
| 71 | 70 | ralimdva 2564 | 
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 DECID ¬ 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴)) | 
| 72 | 66, 71 | syld 45 | 
. 2
⊢ (𝜑 → (∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅) → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴)) | 
| 73 | 30, 72 | impbid 129 | 
1
⊢ (𝜑 → (∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴 ↔ ∃𝑓 ∈ (2o
↑𝑚 𝑋)(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝑓‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝑓‘𝑥) = ∅))) |