ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclgf GIF version

Theorem vtoclgf 2836
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgf.1 𝑥𝐴
vtoclgf.2 𝑥𝜓
vtoclgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclgf.4 𝜑
Assertion
Ref Expression
vtoclgf (𝐴𝑉𝜓)

Proof of Theorem vtoclgf
StepHypRef Expression
1 elex 2788 . 2 (𝐴𝑉𝐴 ∈ V)
2 vtoclgf.1 . . . 4 𝑥𝐴
32issetf 2784 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 vtoclgf.2 . . . 4 𝑥𝜓
5 vtoclgf.4 . . . . 5 𝜑
6 vtoclgf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6mpbii 148 . . . 4 (𝑥 = 𝐴𝜓)
84, 7exlimi 1618 . . 3 (∃𝑥 𝑥 = 𝐴𝜓)
93, 8sylbi 121 . 2 (𝐴 ∈ V → 𝜓)
101, 9syl 14 1 (𝐴𝑉𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wnf 1484  wex 1516  wcel 2178  wnfc 2337  Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778
This theorem is referenced by:  vtoclg  2838  vtocl2gf  2840  vtocl3gf  2841  vtoclgaf  2843  ceqsexg  2908  elabgf  2922  mob  2962  opeliunxp2  4836  fvmptss2  5677
  Copyright terms: Public domain W3C validator