Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclgf | GIF version |
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgf.1 | ⊢ Ⅎ𝑥𝐴 |
vtoclgf.2 | ⊢ Ⅎ𝑥𝜓 |
vtoclgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclgf.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclgf | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | vtoclgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | issetf 2733 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
4 | vtoclgf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | vtoclgf.4 | . . . . 5 ⊢ 𝜑 | |
6 | vtoclgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | mpbii 147 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
8 | 4, 7 | exlimi 1582 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
9 | 3, 8 | sylbi 120 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
10 | 1, 9 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 Ⅎwnf 1448 ∃wex 1480 ∈ wcel 2136 Ⅎwnfc 2295 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: vtoclg 2786 vtocl2gf 2788 vtocl3gf 2789 vtoclgaf 2791 ceqsexg 2854 elabgf 2868 mob 2908 opeliunxp2 4744 fvmptss2 5561 |
Copyright terms: Public domain | W3C validator |