![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclgf | GIF version |
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgf.1 | ⊢ Ⅎ𝑥𝐴 |
vtoclgf.2 | ⊢ Ⅎ𝑥𝜓 |
vtoclgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclgf.4 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclgf | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2652 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | vtoclgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | issetf 2648 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
4 | vtoclgf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | vtoclgf.4 | . . . . 5 ⊢ 𝜑 | |
6 | vtoclgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 5, 6 | mpbii 147 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜓) |
8 | 4, 7 | exlimi 1541 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜓) |
9 | 3, 8 | sylbi 120 | . 2 ⊢ (𝐴 ∈ V → 𝜓) |
10 | 1, 9 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1299 Ⅎwnf 1404 ∃wex 1436 ∈ wcel 1448 Ⅎwnfc 2227 Vcvv 2641 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 |
This theorem is referenced by: vtoclg 2701 vtocl2gf 2703 vtocl3gf 2704 vtoclgaf 2706 ceqsexg 2767 elabgf 2780 mob 2819 opeliunxp2 4617 fvmptss2 5428 |
Copyright terms: Public domain | W3C validator |