ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclgf GIF version

Theorem vtoclgf 2859
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgf.1 𝑥𝐴
vtoclgf.2 𝑥𝜓
vtoclgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclgf.4 𝜑
Assertion
Ref Expression
vtoclgf (𝐴𝑉𝜓)

Proof of Theorem vtoclgf
StepHypRef Expression
1 elex 2811 . 2 (𝐴𝑉𝐴 ∈ V)
2 vtoclgf.1 . . . 4 𝑥𝐴
32issetf 2807 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 vtoclgf.2 . . . 4 𝑥𝜓
5 vtoclgf.4 . . . . 5 𝜑
6 vtoclgf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
75, 6mpbii 148 . . . 4 (𝑥 = 𝐴𝜓)
84, 7exlimi 1640 . . 3 (∃𝑥 𝑥 = 𝐴𝜓)
93, 8sylbi 121 . 2 (𝐴 ∈ V → 𝜓)
101, 9syl 14 1 (𝐴𝑉𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wnf 1506  wex 1538  wcel 2200  wnfc 2359  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  vtoclg  2861  vtocl2gf  2863  vtocl3gf  2864  vtoclgaf  2866  ceqsexg  2931  elabgf  2945  mob  2985  opeliunxp2  4862  fvmptss2  5709
  Copyright terms: Public domain W3C validator