| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi12d | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| imbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| bibi12d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi1d 233 | . 2 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| 3 | imbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 3 | bibi2d 232 | . 2 ⊢ (𝜑 → ((𝜒 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32 453 bi2bian9 608 cleqh 2296 abbi 2310 cleqf 2364 cbvreuvw 2735 vtoclb 2821 vtoclbg 2825 ceqsexg 2892 elabgf 2906 reu6 2953 ru 2988 sbcbig 3036 sbcne12g 3102 sbcnestgf 3136 preq12bg 3804 nalset 4164 undifexmid 4227 exmidsssn 4236 exmidsssnc 4237 exmidundif 4240 opthg 4272 opelopabsb 4295 wetriext 4614 opeliunxp2 4807 resieq 4957 elimasng 5038 cbviota 5225 iota2df 5245 fnbrfvb 5604 fvelimab 5620 fmptco 5731 fsng 5738 fressnfv 5752 funfvima3 5799 isorel 5858 isocnv 5861 isocnv2 5862 isotr 5866 ovg 6066 caovcang 6089 caovordg 6095 caovord3d 6098 caovord 6099 uchoice 6204 opeliunxp2f 6305 dftpos4 6330 ecopovsym 6699 ecopovsymg 6702 xpf1o 6914 nneneq 6927 supmoti 7068 supsnti 7080 isotilem 7081 isoti 7082 ltanqg 7486 ltmnqg 7487 elinp 7560 prnmaxl 7574 prnminu 7575 ltasrg 7856 axpre-ltadd 7972 zextle 9436 zextlt 9437 xlesubadd 9977 rexfiuz 11173 climshft 11488 dvdsext 12039 ltoddhalfle 12077 halfleoddlt 12078 bezoutlemmo 12200 bezoutlemeu 12201 bezoutlemle 12202 bezoutlemsup 12203 dfgcd3 12204 dvdssq 12225 rpexp 12348 pcdvdsb 12516 isnsg 13410 nsgbi 13412 elnmz 13416 nmzbi 13417 nmznsg 13421 islidlm 14113 xmeteq0 14703 comet 14843 dedekindeulemuub 14961 dedekindeulemloc 14963 dedekindicclemuub 14970 dedekindicclemloc 14972 logltb 15218 bj-nalset 15649 bj-d0clsepcl 15679 bj-nn0sucALT 15732 ltlenmkv 15827 |
| Copyright terms: Public domain | W3C validator |