Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
imbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
bibi12d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi1d 232 | . 2 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
3 | imbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 3 | bibi2d 231 | . 2 ⊢ (𝜑 → ((𝜒 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
5 | 2, 4 | bitrd 187 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32 449 bi2bian9 598 cleqh 2266 abbi 2280 cleqf 2333 cbvreuvw 2698 vtoclb 2783 vtoclbg 2787 ceqsexg 2854 elabgf 2868 reu6 2915 ru 2950 sbcbig 2997 sbcne12g 3063 sbcnestgf 3096 preq12bg 3753 nalset 4112 undifexmid 4172 exmidsssn 4181 exmidsssnc 4182 exmidundif 4185 opthg 4216 opelopabsb 4238 wetriext 4554 opeliunxp2 4744 resieq 4894 elimasng 4972 cbviota 5158 iota2df 5177 fnbrfvb 5527 fvelimab 5542 fmptco 5651 fsng 5658 fressnfv 5672 funfvima3 5718 isorel 5776 isocnv 5779 isocnv2 5780 isotr 5784 ovg 5980 caovcang 6003 caovordg 6009 caovord3d 6012 caovord 6013 opeliunxp2f 6206 dftpos4 6231 ecopovsym 6597 ecopovsymg 6600 xpf1o 6810 nneneq 6823 supmoti 6958 supsnti 6970 isotilem 6971 isoti 6972 ltanqg 7341 ltmnqg 7342 elinp 7415 prnmaxl 7429 prnminu 7430 ltasrg 7711 axpre-ltadd 7827 zextle 9282 zextlt 9283 xlesubadd 9819 rexfiuz 10931 climshft 11245 dvdsext 11793 ltoddhalfle 11830 halfleoddlt 11831 bezoutlemmo 11939 bezoutlemeu 11940 bezoutlemle 11941 bezoutlemsup 11942 dfgcd3 11943 dvdssq 11964 rpexp 12085 pcdvdsb 12251 xmeteq0 12999 comet 13139 dedekindeulemuub 13235 dedekindeulemloc 13237 dedekindicclemuub 13244 dedekindicclemloc 13246 logltb 13435 bj-nalset 13777 bj-d0clsepcl 13807 bj-nn0sucALT 13860 |
Copyright terms: Public domain | W3C validator |