| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi12d | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| imbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| bibi12d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi1d 233 | . 2 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| 3 | imbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 3 | bibi2d 232 | . 2 ⊢ (𝜑 → ((𝜒 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32 453 bi2bian9 610 cleqh 2309 abbi 2323 cleqf 2377 cbvreuvw 2751 vtoclb 2838 vtoclbg 2842 ceqsexg 2911 elabgf 2925 reu6 2972 ru 3007 sbcbig 3055 sbcne12g 3122 sbcnestgf 3156 preq12bg 3830 nalset 4193 undifexmid 4256 exmidsssn 4265 exmidsssnc 4266 exmidundif 4269 opthg 4303 opelopabsb 4327 wetriext 4646 opeliunxp2 4839 resieq 4991 elimasng 5072 cbviota 5259 iota2df 5280 fnbrfvb 5646 fvelimab 5663 fmptco 5774 fsng 5781 fressnfv 5799 funfvima3 5846 isorel 5905 isocnv 5908 isocnv2 5909 isotr 5913 ovg 6115 caovcang 6138 caovordg 6144 caovord3d 6147 caovord 6148 uchoice 6253 opeliunxp2f 6354 dftpos4 6379 ecopovsym 6748 ecopovsymg 6751 xpf1o 6973 nneneq 6986 supmoti 7128 supsnti 7140 isotilem 7141 isoti 7142 ltanqg 7555 ltmnqg 7556 elinp 7629 prnmaxl 7643 prnminu 7644 ltasrg 7925 axpre-ltadd 8041 zextle 9506 zextlt 9507 xlesubadd 10047 rexfiuz 11466 climshft 11781 dvdsext 12332 ltoddhalfle 12370 halfleoddlt 12371 bezoutlemmo 12493 bezoutlemeu 12494 bezoutlemle 12495 bezoutlemsup 12496 dfgcd3 12497 dvdssq 12518 rpexp 12641 pcdvdsb 12809 isnsg 13705 nsgbi 13707 elnmz 13711 nmzbi 13712 nmznsg 13716 islidlm 14408 xmeteq0 14998 comet 15138 dedekindeulemuub 15256 dedekindeulemloc 15258 dedekindicclemuub 15265 dedekindicclemloc 15267 logltb 15513 bj-nalset 16168 bj-d0clsepcl 16198 bj-nn0sucALT 16251 ltlenmkv 16349 |
| Copyright terms: Public domain | W3C validator |