| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi12d | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| imbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| bibi12d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi1d 233 | . 2 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| 3 | imbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 3 | bibi2d 232 | . 2 ⊢ (𝜑 → ((𝜒 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32 453 bi2bian9 610 cleqh 2329 abbi 2343 cleqf 2397 cbvreuvw 2771 vtoclb 2858 vtoclbg 2862 ceqsexg 2931 elabgf 2945 reu6 2992 ru 3027 sbcbig 3075 sbcne12g 3142 sbcnestgf 3176 preq12bg 3851 nalset 4214 undifexmid 4277 exmidsssn 4286 exmidsssnc 4287 exmidundif 4290 opthg 4324 opelopabsb 4348 wetriext 4669 opeliunxp2 4862 resieq 5015 elimasng 5096 cbviota 5283 iota2df 5304 fnbrfvb 5674 fvelimab 5692 fmptco 5803 fsng 5810 fressnfv 5830 funfvima3 5877 isorel 5938 isocnv 5941 isocnv2 5942 isotr 5946 ovg 6150 caovcang 6173 caovordg 6179 caovord3d 6182 caovord 6183 uchoice 6289 opeliunxp2f 6390 dftpos4 6415 ecopovsym 6786 ecopovsymg 6789 xpf1o 7013 nneneq 7026 supmoti 7168 supsnti 7180 isotilem 7181 isoti 7182 ltanqg 7595 ltmnqg 7596 elinp 7669 prnmaxl 7683 prnminu 7684 ltasrg 7965 axpre-ltadd 8081 zextle 9546 zextlt 9547 xlesubadd 10087 rexfiuz 11508 climshft 11823 dvdsext 12374 ltoddhalfle 12412 halfleoddlt 12413 bezoutlemmo 12535 bezoutlemeu 12536 bezoutlemle 12537 bezoutlemsup 12538 dfgcd3 12539 dvdssq 12560 rpexp 12683 pcdvdsb 12851 isnsg 13747 nsgbi 13749 elnmz 13753 nmzbi 13754 nmznsg 13758 islidlm 14451 xmeteq0 15041 comet 15181 dedekindeulemuub 15299 dedekindeulemloc 15301 dedekindicclemuub 15308 dedekindicclemloc 15310 logltb 15556 bj-nalset 16282 bj-d0clsepcl 16312 bj-nn0sucALT 16365 ltlenmkv 16468 |
| Copyright terms: Public domain | W3C validator |