![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bibi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
imbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
bibi12d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi1d 232 | . 2 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
3 | imbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 3 | bibi2d 231 | . 2 ⊢ (𝜑 → ((𝜒 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
5 | 2, 4 | bitrd 187 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32 446 bi2bian9 580 cleqh 2214 abbi 2228 cleqf 2279 vtoclb 2714 vtoclbg 2718 ceqsexg 2783 elabgf 2796 reu6 2842 ru 2877 sbcbig 2923 sbcne12g 2987 sbcnestgf 3017 preq12bg 3666 nalset 4018 undifexmid 4077 exmidsssn 4085 exmidsssnc 4086 exmidundif 4089 opthg 4120 opelopabsb 4142 wetriext 4451 opeliunxp2 4639 resieq 4787 elimasng 4865 cbviota 5051 iota2df 5070 fnbrfvb 5416 fvelimab 5431 fmptco 5540 fsng 5547 fressnfv 5561 funfvima3 5605 isorel 5663 isocnv 5666 isocnv2 5667 isotr 5671 ovg 5863 caovcang 5886 caovordg 5892 caovord3d 5895 caovord 5896 opeliunxp2f 6089 dftpos4 6114 ecopovsym 6479 ecopovsymg 6482 xpf1o 6691 nneneq 6704 supmoti 6832 supsnti 6844 isotilem 6845 isoti 6846 ltanqg 7156 ltmnqg 7157 elinp 7230 prnmaxl 7244 prnminu 7245 ltasrg 7513 axpre-ltadd 7621 zextle 9046 zextlt 9047 xlesubadd 9559 rexfiuz 10653 climshft 10965 dvdsext 11401 ltoddhalfle 11438 halfleoddlt 11439 bezoutlemmo 11540 bezoutlemeu 11541 bezoutlemle 11542 bezoutlemsup 11543 dfgcd3 11544 dvdssq 11565 rpexp 11677 xmeteq0 12348 comet 12488 bj-nalset 12785 bj-d0clsepcl 12815 bj-nn0sucALT 12868 |
Copyright terms: Public domain | W3C validator |