Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
imbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
bibi12d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi1d 232 | . 2 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
3 | imbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 3 | bibi2d 231 | . 2 ⊢ (𝜑 → ((𝜒 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
5 | 2, 4 | bitrd 187 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32 450 bi2bian9 603 cleqh 2270 abbi 2284 cleqf 2337 cbvreuvw 2702 vtoclb 2787 vtoclbg 2791 ceqsexg 2858 elabgf 2872 reu6 2919 ru 2954 sbcbig 3001 sbcne12g 3067 sbcnestgf 3100 preq12bg 3760 nalset 4119 undifexmid 4179 exmidsssn 4188 exmidsssnc 4189 exmidundif 4192 opthg 4223 opelopabsb 4245 wetriext 4561 opeliunxp2 4751 resieq 4901 elimasng 4979 cbviota 5165 iota2df 5184 fnbrfvb 5537 fvelimab 5552 fmptco 5662 fsng 5669 fressnfv 5683 funfvima3 5729 isorel 5787 isocnv 5790 isocnv2 5791 isotr 5795 ovg 5991 caovcang 6014 caovordg 6020 caovord3d 6023 caovord 6024 opeliunxp2f 6217 dftpos4 6242 ecopovsym 6609 ecopovsymg 6612 xpf1o 6822 nneneq 6835 supmoti 6970 supsnti 6982 isotilem 6983 isoti 6984 ltanqg 7362 ltmnqg 7363 elinp 7436 prnmaxl 7450 prnminu 7451 ltasrg 7732 axpre-ltadd 7848 zextle 9303 zextlt 9304 xlesubadd 9840 rexfiuz 10953 climshft 11267 dvdsext 11815 ltoddhalfle 11852 halfleoddlt 11853 bezoutlemmo 11961 bezoutlemeu 11962 bezoutlemle 11963 bezoutlemsup 11964 dfgcd3 11965 dvdssq 11986 rpexp 12107 pcdvdsb 12273 xmeteq0 13153 comet 13293 dedekindeulemuub 13389 dedekindeulemloc 13391 dedekindicclemuub 13398 dedekindicclemloc 13400 logltb 13589 bj-nalset 13930 bj-d0clsepcl 13960 bj-nn0sucALT 14013 |
Copyright terms: Public domain | W3C validator |