| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bibi12d | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| imbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| bibi12d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi1d 233 | . 2 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
| 3 | imbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 3 | bibi2d 232 | . 2 ⊢ (𝜑 → ((𝜒 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.32 453 bi2bian9 608 cleqh 2306 abbi 2320 cleqf 2374 cbvreuvw 2745 vtoclb 2831 vtoclbg 2835 ceqsexg 2902 elabgf 2916 reu6 2963 ru 2998 sbcbig 3046 sbcne12g 3112 sbcnestgf 3146 preq12bg 3816 nalset 4178 undifexmid 4241 exmidsssn 4250 exmidsssnc 4251 exmidundif 4254 opthg 4286 opelopabsb 4310 wetriext 4629 opeliunxp2 4822 resieq 4974 elimasng 5055 cbviota 5242 iota2df 5262 fnbrfvb 5626 fvelimab 5642 fmptco 5753 fsng 5760 fressnfv 5778 funfvima3 5825 isorel 5884 isocnv 5887 isocnv2 5888 isotr 5892 ovg 6092 caovcang 6115 caovordg 6121 caovord3d 6124 caovord 6125 uchoice 6230 opeliunxp2f 6331 dftpos4 6356 ecopovsym 6725 ecopovsymg 6728 xpf1o 6948 nneneq 6961 supmoti 7102 supsnti 7114 isotilem 7115 isoti 7116 ltanqg 7520 ltmnqg 7521 elinp 7594 prnmaxl 7608 prnminu 7609 ltasrg 7890 axpre-ltadd 8006 zextle 9471 zextlt 9472 xlesubadd 10012 rexfiuz 11344 climshft 11659 dvdsext 12210 ltoddhalfle 12248 halfleoddlt 12249 bezoutlemmo 12371 bezoutlemeu 12372 bezoutlemle 12373 bezoutlemsup 12374 dfgcd3 12375 dvdssq 12396 rpexp 12519 pcdvdsb 12687 isnsg 13582 nsgbi 13584 elnmz 13588 nmzbi 13589 nmznsg 13593 islidlm 14285 xmeteq0 14875 comet 15015 dedekindeulemuub 15133 dedekindeulemloc 15135 dedekindicclemuub 15142 dedekindicclemloc 15144 logltb 15390 bj-nalset 15905 bj-d0clsepcl 15935 bj-nn0sucALT 15988 ltlenmkv 16083 |
| Copyright terms: Public domain | W3C validator |