| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > bibi12d | GIF version | ||
| Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| imbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | 
| imbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | 
| Ref | Expression | 
|---|---|
| bibi12d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | bibi1d 233 | . 2 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) | 
| 3 | imbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 4 | 3 | bibi2d 232 | . 2 ⊢ (𝜑 → ((𝜒 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) | 
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm5.32 453 bi2bian9 608 cleqh 2296 abbi 2310 cleqf 2364 cbvreuvw 2735 vtoclb 2821 vtoclbg 2825 ceqsexg 2892 elabgf 2906 reu6 2953 ru 2988 sbcbig 3036 sbcne12g 3102 sbcnestgf 3136 preq12bg 3803 nalset 4163 undifexmid 4226 exmidsssn 4235 exmidsssnc 4236 exmidundif 4239 opthg 4271 opelopabsb 4294 wetriext 4613 opeliunxp2 4806 resieq 4956 elimasng 5037 cbviota 5224 iota2df 5244 fnbrfvb 5601 fvelimab 5617 fmptco 5728 fsng 5735 fressnfv 5749 funfvima3 5796 isorel 5855 isocnv 5858 isocnv2 5859 isotr 5863 ovg 6062 caovcang 6085 caovordg 6091 caovord3d 6094 caovord 6095 uchoice 6195 opeliunxp2f 6296 dftpos4 6321 ecopovsym 6690 ecopovsymg 6693 xpf1o 6905 nneneq 6918 supmoti 7059 supsnti 7071 isotilem 7072 isoti 7073 ltanqg 7467 ltmnqg 7468 elinp 7541 prnmaxl 7555 prnminu 7556 ltasrg 7837 axpre-ltadd 7953 zextle 9417 zextlt 9418 xlesubadd 9958 rexfiuz 11154 climshft 11469 dvdsext 12020 ltoddhalfle 12058 halfleoddlt 12059 bezoutlemmo 12173 bezoutlemeu 12174 bezoutlemle 12175 bezoutlemsup 12176 dfgcd3 12177 dvdssq 12198 rpexp 12321 pcdvdsb 12489 isnsg 13332 nsgbi 13334 elnmz 13338 nmzbi 13339 nmznsg 13343 islidlm 14035 xmeteq0 14595 comet 14735 dedekindeulemuub 14853 dedekindeulemloc 14855 dedekindicclemuub 14862 dedekindicclemloc 14864 logltb 15110 bj-nalset 15541 bj-d0clsepcl 15571 bj-nn0sucALT 15624 ltlenmkv 15714 | 
| Copyright terms: Public domain | W3C validator |