![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bibi12d | GIF version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
imbi12d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
Ref | Expression |
---|---|
bibi12d | ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | bibi1d 233 | . 2 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) |
3 | imbi12d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
4 | 3 | bibi2d 232 | . 2 ⊢ (𝜑 → ((𝜒 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.32 453 bi2bian9 608 cleqh 2293 abbi 2307 cleqf 2361 cbvreuvw 2732 vtoclb 2817 vtoclbg 2821 ceqsexg 2888 elabgf 2902 reu6 2949 ru 2984 sbcbig 3032 sbcne12g 3098 sbcnestgf 3132 preq12bg 3799 nalset 4159 undifexmid 4222 exmidsssn 4231 exmidsssnc 4232 exmidundif 4235 opthg 4267 opelopabsb 4290 wetriext 4609 opeliunxp2 4802 resieq 4952 elimasng 5033 cbviota 5220 iota2df 5240 fnbrfvb 5597 fvelimab 5613 fmptco 5724 fsng 5731 fressnfv 5745 funfvima3 5792 isorel 5851 isocnv 5854 isocnv2 5855 isotr 5859 ovg 6057 caovcang 6080 caovordg 6086 caovord3d 6089 caovord 6090 uchoice 6190 opeliunxp2f 6291 dftpos4 6316 ecopovsym 6685 ecopovsymg 6688 xpf1o 6900 nneneq 6913 supmoti 7052 supsnti 7064 isotilem 7065 isoti 7066 ltanqg 7460 ltmnqg 7461 elinp 7534 prnmaxl 7548 prnminu 7549 ltasrg 7830 axpre-ltadd 7946 zextle 9408 zextlt 9409 xlesubadd 9949 rexfiuz 11133 climshft 11447 dvdsext 11997 ltoddhalfle 12034 halfleoddlt 12035 bezoutlemmo 12143 bezoutlemeu 12144 bezoutlemle 12145 bezoutlemsup 12146 dfgcd3 12147 dvdssq 12168 rpexp 12291 pcdvdsb 12458 isnsg 13272 nsgbi 13274 elnmz 13278 nmzbi 13279 nmznsg 13283 islidlm 13975 xmeteq0 14527 comet 14667 dedekindeulemuub 14771 dedekindeulemloc 14773 dedekindicclemuub 14780 dedekindicclemloc 14782 logltb 15009 bj-nalset 15387 bj-d0clsepcl 15417 bj-nn0sucALT 15470 ltlenmkv 15560 |
Copyright terms: Public domain | W3C validator |