ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl GIF version

Theorem vtocl 2814
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtocl.1 𝐴 ∈ V
vtocl.2 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl.3 𝜑
Assertion
Ref Expression
vtocl 𝜓
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem vtocl
StepHypRef Expression
1 nfv 1539 . 2 𝑥𝜓
2 vtocl.1 . 2 𝐴 ∈ V
3 vtocl.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
4 vtocl.3 . 2 𝜑
51, 2, 3, 4vtoclf 2813 1 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by:  vtoclb  2817  zfauscl  4149  bnd2  4202  uniex  4468  ordtriexmid  4553  onsucsssucexmid  4559  regexmid  4567  ordsoexmid  4594  onintexmid  4605  reg3exmid  4612  nnregexmid  4653  acexmidlemv  5916  caovcan  6083  findcard2  6945  findcard2s  6946  inffiexmid  6962  sup3exmid  8976  bj-uniex  15409  bj-omtrans  15448
  Copyright terms: Public domain W3C validator