ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl GIF version

Theorem vtocl 2818
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtocl.1 𝐴 ∈ V
vtocl.2 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl.3 𝜑
Assertion
Ref Expression
vtocl 𝜓
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem vtocl
StepHypRef Expression
1 nfv 1542 . 2 𝑥𝜓
2 vtocl.1 . 2 𝐴 ∈ V
3 vtocl.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
4 vtocl.3 . 2 𝜑
51, 2, 3, 4vtoclf 2817 1 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  vtoclb  2821  zfauscl  4153  bnd2  4206  uniex  4472  ordtriexmid  4557  onsucsssucexmid  4563  regexmid  4571  ordsoexmid  4598  onintexmid  4609  reg3exmid  4616  nnregexmid  4657  acexmidlemv  5920  caovcan  6088  findcard2  6950  findcard2s  6951  inffiexmid  6967  sup3exmid  8984  bj-uniex  15563  bj-omtrans  15602
  Copyright terms: Public domain W3C validator