Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocl | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ 𝐴 ∈ V |
vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | vtocl.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | vtocl.3 | . 2 ⊢ 𝜑 | |
5 | 1, 2, 3, 4 | vtoclf 2783 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: vtoclb 2787 zfauscl 4109 bnd2 4159 uniex 4422 ordtriexmid 4505 onsucsssucexmid 4511 regexmid 4519 ordsoexmid 4546 onintexmid 4557 reg3exmid 4564 nnregexmid 4605 acexmidlemv 5851 caovcan 6017 findcard2 6867 findcard2s 6868 inffiexmid 6884 sup3exmid 8873 bj-uniex 13952 bj-omtrans 13991 |
Copyright terms: Public domain | W3C validator |