Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocl | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
vtocl.1 | ⊢ 𝐴 ∈ V |
vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
3 | vtocl.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | vtocl.3 | . 2 ⊢ 𝜑 | |
5 | 1, 2, 3, 4 | vtoclf 2779 | 1 ⊢ 𝜓 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: vtoclb 2783 zfauscl 4102 bnd2 4152 uniex 4415 ordtriexmid 4498 onsucsssucexmid 4504 regexmid 4512 ordsoexmid 4539 onintexmid 4550 reg3exmid 4557 nnregexmid 4598 acexmidlemv 5840 caovcan 6006 findcard2 6855 findcard2s 6856 inffiexmid 6872 sup3exmid 8852 bj-uniex 13799 bj-omtrans 13838 |
Copyright terms: Public domain | W3C validator |