| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocl | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| vtocl.1 | ⊢ 𝐴 ∈ V |
| vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | vtocl.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtocl.3 | . 2 ⊢ 𝜑 | |
| 5 | 1, 2, 3, 4 | vtoclf 2825 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: vtoclb 2829 zfauscl 4163 bnd2 4216 uniex 4482 ordtriexmid 4567 onsucsssucexmid 4573 regexmid 4581 ordsoexmid 4608 onintexmid 4619 reg3exmid 4626 nnregexmid 4667 acexmidlemv 5932 caovcan 6101 findcard2 6968 findcard2s 6969 inffiexmid 6985 sup3exmid 9012 bj-uniex 15717 bj-omtrans 15756 |
| Copyright terms: Public domain | W3C validator |