ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl GIF version

Theorem vtocl 2829
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
Hypotheses
Ref Expression
vtocl.1 𝐴 ∈ V
vtocl.2 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl.3 𝜑
Assertion
Ref Expression
vtocl 𝜓
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem vtocl
StepHypRef Expression
1 nfv 1552 . 2 𝑥𝜓
2 vtocl.1 . 2 𝐴 ∈ V
3 vtocl.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
4 vtocl.3 . 2 𝜑
51, 2, 3, 4vtoclf 2828 1 𝜓
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2177  Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775
This theorem is referenced by:  vtoclb  2832  zfauscl  4172  bnd2  4225  uniex  4492  ordtriexmid  4577  onsucsssucexmid  4583  regexmid  4591  ordsoexmid  4618  onintexmid  4629  reg3exmid  4636  nnregexmid  4677  acexmidlemv  5955  caovcan  6124  findcard2  7001  findcard2s  7002  inffiexmid  7018  sup3exmid  9050  bj-uniex  15991  bj-omtrans  16030
  Copyright terms: Public domain W3C validator