| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocl | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| vtocl.1 | ⊢ 𝐴 ∈ V |
| vtocl.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | vtocl.1 | . 2 ⊢ 𝐴 ∈ V | |
| 3 | vtocl.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtocl.3 | . 2 ⊢ 𝜑 | |
| 5 | 1, 2, 3, 4 | vtoclf 2828 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: vtoclb 2832 zfauscl 4172 bnd2 4225 uniex 4492 ordtriexmid 4577 onsucsssucexmid 4583 regexmid 4591 ordsoexmid 4618 onintexmid 4629 reg3exmid 4636 nnregexmid 4677 acexmidlemv 5955 caovcan 6124 findcard2 7001 findcard2s 7002 inffiexmid 7018 sup3exmid 9050 bj-uniex 15991 bj-omtrans 16030 |
| Copyright terms: Public domain | W3C validator |