Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexeq GIF version

Theorem alexeq 2815
 Description: Two ways to express substitution of 𝐴 for 𝑥 in 𝜑. (Contributed by NM, 2-Mar-1995.)
Hypothesis
Ref Expression
alexeq.1 𝐴 ∈ V
Assertion
Ref Expression
alexeq (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem alexeq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 alexeq.1 . . 3 𝐴 ∈ V
2 eqeq2 2150 . . . . 5 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
32anbi1d 461 . . . 4 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
43exbidv 1798 . . 3 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
52imbi1d 230 . . . 4 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
65albidv 1797 . . 3 (𝑦 = 𝐴 → (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
7 sb56 1858 . . 3 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
81, 4, 6, 7vtoclb 2746 . 2 (∃𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑))
98bicomi 131 1 (∀𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104  ∀wal 1330   = wceq 1332  ∃wex 1469   ∈ wcel 1481  Vcvv 2689 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-v 2691 This theorem is referenced by:  ceqex  2816
 Copyright terms: Public domain W3C validator