| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alexeq | GIF version | ||
| Description: Two ways to express substitution of 𝐴 for 𝑥 in 𝜑. (Contributed by NM, 2-Mar-1995.) |
| Ref | Expression |
|---|---|
| alexeq.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| alexeq | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexeq.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | eqeq2 2216 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
| 3 | 2 | anbi1d 465 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
| 4 | 3 | exbidv 1849 | . . 3 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
| 5 | 2 | imbi1d 231 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝐴 → 𝜑))) |
| 6 | 5 | albidv 1848 | . . 3 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| 7 | sb56 1910 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 8 | 1, 4, 6, 7 | vtoclb 2832 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 9 | 8 | bicomi 132 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: ceqex 2902 |
| Copyright terms: Public domain | W3C validator |