ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  repizf2 GIF version

Theorem repizf2 4141
Description: Replacement. This version of replacement is stronger than repizf 4098 in the sense that 𝜑 does not need to map all values of 𝑥 in 𝑤 to a value of 𝑦. The resulting set contains those elements for which there is a value of 𝑦 and in that sense, this theorem combines repizf 4098 with ax-sep 4100. Another variation would be 𝑥𝑤∃*𝑦𝜑 → {𝑦 ∣ ∃𝑥(𝑥𝑤𝜑)} ∈ V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.)
Hypothesis
Ref Expression
repizf2.1 𝑧𝜑
Assertion
Ref Expression
repizf2 (∀𝑥𝑤 ∃*𝑦𝜑 → ∃𝑧𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem repizf2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . 3 𝑤 ∈ V
21rabex 4126 . 2 {𝑥𝑤 ∣ ∃𝑦𝜑} ∈ V
3 repizf2lem 4140 . . . 4 (∀𝑥𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑)
4 nfcv 2308 . . . . . 6 𝑥𝑣
5 nfrab1 2645 . . . . . 6 𝑥{𝑥𝑤 ∣ ∃𝑦𝜑}
64, 5raleqf 2657 . . . . 5 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥𝑣 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑))
7 repizf2.1 . . . . . 6 𝑧𝜑
87repizf 4098 . . . . 5 (∀𝑥𝑣 ∃!𝑦𝜑 → ∃𝑧𝑥𝑣𝑦𝑧 𝜑)
96, 8syl6bir 163 . . . 4 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 → ∃𝑧𝑥𝑣𝑦𝑧 𝜑))
103, 9syl5bi 151 . . 3 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥𝑤 ∃*𝑦𝜑 → ∃𝑧𝑥𝑣𝑦𝑧 𝜑))
11 df-rab 2453 . . . . . 6 {𝑥𝑤 ∣ ∃𝑦𝜑} = {𝑥 ∣ (𝑥𝑤 ∧ ∃𝑦𝜑)}
12 nfv 1516 . . . . . . . 8 𝑧 𝑥𝑤
137nfex 1625 . . . . . . . 8 𝑧𝑦𝜑
1412, 13nfan 1553 . . . . . . 7 𝑧(𝑥𝑤 ∧ ∃𝑦𝜑)
1514nfab 2313 . . . . . 6 𝑧{𝑥 ∣ (𝑥𝑤 ∧ ∃𝑦𝜑)}
1611, 15nfcxfr 2305 . . . . 5 𝑧{𝑥𝑤 ∣ ∃𝑦𝜑}
1716nfeq2 2320 . . . 4 𝑧 𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑}
184, 5raleqf 2657 . . . 4 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥𝑣𝑦𝑧 𝜑 ↔ ∀𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑))
1917, 18exbid 1604 . . 3 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∃𝑧𝑥𝑣𝑦𝑧 𝜑 ↔ ∃𝑧𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑))
2010, 19sylibd 148 . 2 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥𝑤 ∃*𝑦𝜑 → ∃𝑧𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑))
212, 20vtocle 2800 1 (∀𝑥𝑤 ∃*𝑦𝜑 → ∃𝑧𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wnf 1448  wex 1480  ∃!weu 2014  ∃*wmo 2015  {cab 2151  wral 2444  wrex 2445  {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-coll 4097  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator