| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > repizf2 | GIF version | ||
| Description: Replacement. This version of replacement is stronger than repizf 4176 in the sense that 𝜑 does not need to map all values of 𝑥 in 𝑤 to a value of 𝑦. The resulting set contains those elements for which there is a value of 𝑦 and in that sense, this theorem combines repizf 4176 with ax-sep 4178. Another variation would be ∀𝑥 ∈ 𝑤∃*𝑦𝜑 → {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑)} ∈ V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| repizf2.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| repizf2 | ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 | . . 3 ⊢ 𝑤 ∈ V | |
| 2 | 1 | rabex 4204 | . 2 ⊢ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} ∈ V |
| 3 | repizf2lem 4221 | . . . 4 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) | |
| 4 | nfcv 2350 | . . . . . 6 ⊢ Ⅎ𝑥𝑣 | |
| 5 | nfrab1 2688 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} | |
| 6 | 4, 5 | raleqf 2701 | . . . . 5 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑣 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑)) |
| 7 | repizf2.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
| 8 | 7 | repizf 4176 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑣 ∃!𝑦𝜑 → ∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑) |
| 9 | 6, 8 | biimtrrdi 164 | . . . 4 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 → ∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑)) |
| 10 | 3, 9 | biimtrid 152 | . . 3 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑)) |
| 11 | df-rab 2495 | . . . . . 6 ⊢ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑)} | |
| 12 | nfv 1552 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝑥 ∈ 𝑤 | |
| 13 | 7 | nfex 1661 | . . . . . . . 8 ⊢ Ⅎ𝑧∃𝑦𝜑 |
| 14 | 12, 13 | nfan 1589 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑) |
| 15 | 14 | nfab 2355 | . . . . . 6 ⊢ Ⅎ𝑧{𝑥 ∣ (𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑)} |
| 16 | 11, 15 | nfcxfr 2347 | . . . . 5 ⊢ Ⅎ𝑧{𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} |
| 17 | 16 | nfeq2 2362 | . . . 4 ⊢ Ⅎ𝑧 𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} |
| 18 | 4, 5 | raleqf 2701 | . . . 4 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑)) |
| 19 | 17, 18 | exbid 1640 | . . 3 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑)) |
| 20 | 10, 19 | sylibd 149 | . 2 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑)) |
| 21 | 2, 20 | vtocle 2854 | 1 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 ∃!weu 2055 ∃*wmo 2056 {cab 2193 ∀wral 2486 ∃wrex 2487 {crab 2490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-coll 4175 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rab 2495 df-v 2778 df-in 3180 df-ss 3187 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |