ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  repizf2 GIF version

Theorem repizf2 4195
Description: Replacement. This version of replacement is stronger than repizf 4149 in the sense that 𝜑 does not need to map all values of 𝑥 in 𝑤 to a value of 𝑦. The resulting set contains those elements for which there is a value of 𝑦 and in that sense, this theorem combines repizf 4149 with ax-sep 4151. Another variation would be 𝑥𝑤∃*𝑦𝜑 → {𝑦 ∣ ∃𝑥(𝑥𝑤𝜑)} ∈ V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.)
Hypothesis
Ref Expression
repizf2.1 𝑧𝜑
Assertion
Ref Expression
repizf2 (∀𝑥𝑤 ∃*𝑦𝜑 → ∃𝑧𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑)
Distinct variable group:   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem repizf2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . 3 𝑤 ∈ V
21rabex 4177 . 2 {𝑥𝑤 ∣ ∃𝑦𝜑} ∈ V
3 repizf2lem 4194 . . . 4 (∀𝑥𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑)
4 nfcv 2339 . . . . . 6 𝑥𝑣
5 nfrab1 2677 . . . . . 6 𝑥{𝑥𝑤 ∣ ∃𝑦𝜑}
64, 5raleqf 2689 . . . . 5 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥𝑣 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑))
7 repizf2.1 . . . . . 6 𝑧𝜑
87repizf 4149 . . . . 5 (∀𝑥𝑣 ∃!𝑦𝜑 → ∃𝑧𝑥𝑣𝑦𝑧 𝜑)
96, 8biimtrrdi 164 . . . 4 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 → ∃𝑧𝑥𝑣𝑦𝑧 𝜑))
103, 9biimtrid 152 . . 3 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥𝑤 ∃*𝑦𝜑 → ∃𝑧𝑥𝑣𝑦𝑧 𝜑))
11 df-rab 2484 . . . . . 6 {𝑥𝑤 ∣ ∃𝑦𝜑} = {𝑥 ∣ (𝑥𝑤 ∧ ∃𝑦𝜑)}
12 nfv 1542 . . . . . . . 8 𝑧 𝑥𝑤
137nfex 1651 . . . . . . . 8 𝑧𝑦𝜑
1412, 13nfan 1579 . . . . . . 7 𝑧(𝑥𝑤 ∧ ∃𝑦𝜑)
1514nfab 2344 . . . . . 6 𝑧{𝑥 ∣ (𝑥𝑤 ∧ ∃𝑦𝜑)}
1611, 15nfcxfr 2336 . . . . 5 𝑧{𝑥𝑤 ∣ ∃𝑦𝜑}
1716nfeq2 2351 . . . 4 𝑧 𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑}
184, 5raleqf 2689 . . . 4 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥𝑣𝑦𝑧 𝜑 ↔ ∀𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑))
1917, 18exbid 1630 . . 3 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∃𝑧𝑥𝑣𝑦𝑧 𝜑 ↔ ∃𝑧𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑))
2010, 19sylibd 149 . 2 (𝑣 = {𝑥𝑤 ∣ ∃𝑦𝜑} → (∀𝑥𝑤 ∃*𝑦𝜑 → ∃𝑧𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑))
212, 20vtocle 2838 1 (∀𝑥𝑤 ∃*𝑦𝜑 → ∃𝑧𝑥 ∈ {𝑥𝑤 ∣ ∃𝑦𝜑}∃𝑦𝑧 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wnf 1474  wex 1506  ∃!weu 2045  ∃*wmo 2046  {cab 2182  wral 2475  wrex 2476  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-coll 4148  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator