| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > repizf2 | GIF version | ||
| Description: Replacement. This version of replacement is stronger than repizf 4149 in the sense that 𝜑 does not need to map all values of 𝑥 in 𝑤 to a value of 𝑦. The resulting set contains those elements for which there is a value of 𝑦 and in that sense, this theorem combines repizf 4149 with ax-sep 4151. Another variation would be ∀𝑥 ∈ 𝑤∃*𝑦𝜑 → {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑)} ∈ V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| repizf2.1 | ⊢ Ⅎ𝑧𝜑 | 
| Ref | Expression | 
|---|---|
| repizf2 | ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . 3 ⊢ 𝑤 ∈ V | |
| 2 | 1 | rabex 4177 | . 2 ⊢ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} ∈ V | 
| 3 | repizf2lem 4194 | . . . 4 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) | |
| 4 | nfcv 2339 | . . . . . 6 ⊢ Ⅎ𝑥𝑣 | |
| 5 | nfrab1 2677 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} | |
| 6 | 4, 5 | raleqf 2689 | . . . . 5 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑣 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑)) | 
| 7 | repizf2.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
| 8 | 7 | repizf 4149 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑣 ∃!𝑦𝜑 → ∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑) | 
| 9 | 6, 8 | biimtrrdi 164 | . . . 4 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 → ∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑)) | 
| 10 | 3, 9 | biimtrid 152 | . . 3 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑)) | 
| 11 | df-rab 2484 | . . . . . 6 ⊢ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑)} | |
| 12 | nfv 1542 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝑥 ∈ 𝑤 | |
| 13 | 7 | nfex 1651 | . . . . . . . 8 ⊢ Ⅎ𝑧∃𝑦𝜑 | 
| 14 | 12, 13 | nfan 1579 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑) | 
| 15 | 14 | nfab 2344 | . . . . . 6 ⊢ Ⅎ𝑧{𝑥 ∣ (𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑)} | 
| 16 | 11, 15 | nfcxfr 2336 | . . . . 5 ⊢ Ⅎ𝑧{𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} | 
| 17 | 16 | nfeq2 2351 | . . . 4 ⊢ Ⅎ𝑧 𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} | 
| 18 | 4, 5 | raleqf 2689 | . . . 4 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑)) | 
| 19 | 17, 18 | exbid 1630 | . . 3 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑)) | 
| 20 | 10, 19 | sylibd 149 | . 2 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑)) | 
| 21 | 2, 20 | vtocle 2838 | 1 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 ∃!weu 2045 ∃*wmo 2046 {cab 2182 ∀wral 2475 ∃wrex 2476 {crab 2479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-coll 4148 ax-sep 4151 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |