Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > repizf2 | GIF version |
Description: Replacement. This version of replacement is stronger than repizf 4114 in the sense that 𝜑 does not need to map all values of 𝑥 in 𝑤 to a value of 𝑦. The resulting set contains those elements for which there is a value of 𝑦 and in that sense, this theorem combines repizf 4114 with ax-sep 4116. Another variation would be ∀𝑥 ∈ 𝑤∃*𝑦𝜑 → {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑)} ∈ V but we don't have a proof of that yet. (Contributed by Jim Kingdon, 7-Sep-2018.) |
Ref | Expression |
---|---|
repizf2.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
repizf2 | ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . 3 ⊢ 𝑤 ∈ V | |
2 | 1 | rabex 4142 | . 2 ⊢ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} ∈ V |
3 | repizf2lem 4156 | . . . 4 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) | |
4 | nfcv 2317 | . . . . . 6 ⊢ Ⅎ𝑥𝑣 | |
5 | nfrab1 2654 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} | |
6 | 4, 5 | raleqf 2666 | . . . . 5 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑣 ∃!𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑)) |
7 | repizf2.1 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
8 | 7 | repizf 4114 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑣 ∃!𝑦𝜑 → ∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑) |
9 | 6, 8 | syl6bir 164 | . . . 4 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 → ∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑)) |
10 | 3, 9 | biimtrid 152 | . . 3 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑)) |
11 | df-rab 2462 | . . . . . 6 ⊢ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} = {𝑥 ∣ (𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑)} | |
12 | nfv 1526 | . . . . . . . 8 ⊢ Ⅎ𝑧 𝑥 ∈ 𝑤 | |
13 | 7 | nfex 1635 | . . . . . . . 8 ⊢ Ⅎ𝑧∃𝑦𝜑 |
14 | 12, 13 | nfan 1563 | . . . . . . 7 ⊢ Ⅎ𝑧(𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑) |
15 | 14 | nfab 2322 | . . . . . 6 ⊢ Ⅎ𝑧{𝑥 ∣ (𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑)} |
16 | 11, 15 | nfcxfr 2314 | . . . . 5 ⊢ Ⅎ𝑧{𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} |
17 | 16 | nfeq2 2329 | . . . 4 ⊢ Ⅎ𝑧 𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} |
18 | 4, 5 | raleqf 2666 | . . . 4 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑)) |
19 | 17, 18 | exbid 1614 | . . 3 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∃𝑧∀𝑥 ∈ 𝑣 ∃𝑦 ∈ 𝑧 𝜑 ↔ ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑)) |
20 | 10, 19 | sylibd 149 | . 2 ⊢ (𝑣 = {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑)) |
21 | 2, 20 | vtocle 2809 | 1 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 → ∃𝑧∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃𝑦 ∈ 𝑧 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 Ⅎwnf 1458 ∃wex 1490 ∃!weu 2024 ∃*wmo 2025 {cab 2161 ∀wral 2453 ∃wrex 2454 {crab 2457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-coll 4113 ax-sep 4116 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rab 2462 df-v 2737 df-in 3133 df-ss 3140 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |