ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ind-raph GIF version

Theorem nn0ind-raph 9383
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
nn0ind-raph.1 (𝑥 = 0 → (𝜑𝜓))
nn0ind-raph.2 (𝑥 = 𝑦 → (𝜑𝜒))
nn0ind-raph.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nn0ind-raph.4 (𝑥 = 𝐴 → (𝜑𝜏))
nn0ind-raph.5 𝜓
nn0ind-raph.6 (𝑦 ∈ ℕ0 → (𝜒𝜃))
Assertion
Ref Expression
nn0ind-raph (𝐴 ∈ ℕ0𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nn0ind-raph
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elnn0 9191 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 dfsbcq2 2977 . . . 4 (𝑧 = 1 → ([𝑧 / 𝑥]𝜑[1 / 𝑥]𝜑))
3 nfv 1538 . . . . 5 𝑥𝜒
4 nn0ind-raph.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
53, 4sbhypf 2798 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜒))
6 nfv 1538 . . . . 5 𝑥𝜃
7 nn0ind-raph.3 . . . . 5 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
86, 7sbhypf 2798 . . . 4 (𝑧 = (𝑦 + 1) → ([𝑧 / 𝑥]𝜑𝜃))
9 nfv 1538 . . . . 5 𝑥𝜏
10 nn0ind-raph.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
119, 10sbhypf 2798 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝜑𝜏))
12 nfsbc1v 2993 . . . . 5 𝑥[1 / 𝑥]𝜑
13 1ex 7965 . . . . 5 1 ∈ V
14 c0ex 7964 . . . . . . 7 0 ∈ V
15 0nn0 9204 . . . . . . . . . . . 12 0 ∈ ℕ0
16 eleq1a 2259 . . . . . . . . . . . 12 (0 ∈ ℕ0 → (𝑦 = 0 → 𝑦 ∈ ℕ0))
1715, 16ax-mp 5 . . . . . . . . . . 11 (𝑦 = 0 → 𝑦 ∈ ℕ0)
18 nn0ind-raph.5 . . . . . . . . . . . . . . 15 𝜓
19 nn0ind-raph.1 . . . . . . . . . . . . . . 15 (𝑥 = 0 → (𝜑𝜓))
2018, 19mpbiri 168 . . . . . . . . . . . . . 14 (𝑥 = 0 → 𝜑)
21 eqeq2 2197 . . . . . . . . . . . . . . . 16 (𝑦 = 0 → (𝑥 = 𝑦𝑥 = 0))
2221, 4syl6bir 164 . . . . . . . . . . . . . . 15 (𝑦 = 0 → (𝑥 = 0 → (𝜑𝜒)))
2322pm5.74d 182 . . . . . . . . . . . . . 14 (𝑦 = 0 → ((𝑥 = 0 → 𝜑) ↔ (𝑥 = 0 → 𝜒)))
2420, 23mpbii 148 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑥 = 0 → 𝜒))
2524com12 30 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑦 = 0 → 𝜒))
2614, 25vtocle 2823 . . . . . . . . . . 11 (𝑦 = 0 → 𝜒)
27 nn0ind-raph.6 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (𝜒𝜃))
2817, 26, 27sylc 62 . . . . . . . . . 10 (𝑦 = 0 → 𝜃)
2928adantr 276 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑥 = 1) → 𝜃)
30 oveq1 5895 . . . . . . . . . . . . 13 (𝑦 = 0 → (𝑦 + 1) = (0 + 1))
31 0p1e1 9046 . . . . . . . . . . . . 13 (0 + 1) = 1
3230, 31eqtrdi 2236 . . . . . . . . . . . 12 (𝑦 = 0 → (𝑦 + 1) = 1)
3332eqeq2d 2199 . . . . . . . . . . 11 (𝑦 = 0 → (𝑥 = (𝑦 + 1) ↔ 𝑥 = 1))
3433, 7syl6bir 164 . . . . . . . . . 10 (𝑦 = 0 → (𝑥 = 1 → (𝜑𝜃)))
3534imp 124 . . . . . . . . 9 ((𝑦 = 0 ∧ 𝑥 = 1) → (𝜑𝜃))
3629, 35mpbird 167 . . . . . . . 8 ((𝑦 = 0 ∧ 𝑥 = 1) → 𝜑)
3736ex 115 . . . . . . 7 (𝑦 = 0 → (𝑥 = 1 → 𝜑))
3814, 37vtocle 2823 . . . . . 6 (𝑥 = 1 → 𝜑)
39 sbceq1a 2984 . . . . . 6 (𝑥 = 1 → (𝜑[1 / 𝑥]𝜑))
4038, 39mpbid 147 . . . . 5 (𝑥 = 1 → [1 / 𝑥]𝜑)
4112, 13, 40vtoclef 2822 . . . 4 [1 / 𝑥]𝜑
42 nnnn0 9196 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
4342, 27syl 14 . . . 4 (𝑦 ∈ ℕ → (𝜒𝜃))
442, 5, 8, 11, 41, 43nnind 8948 . . 3 (𝐴 ∈ ℕ → 𝜏)
45 nfv 1538 . . . . 5 𝑥(0 = 𝐴𝜏)
46 eqeq1 2194 . . . . . 6 (𝑥 = 0 → (𝑥 = 𝐴 ↔ 0 = 𝐴))
4719bicomd 141 . . . . . . . . 9 (𝑥 = 0 → (𝜓𝜑))
4847, 10sylan9bb 462 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑥 = 𝐴) → (𝜓𝜏))
4918, 48mpbii 148 . . . . . . 7 ((𝑥 = 0 ∧ 𝑥 = 𝐴) → 𝜏)
5049ex 115 . . . . . 6 (𝑥 = 0 → (𝑥 = 𝐴𝜏))
5146, 50sylbird 170 . . . . 5 (𝑥 = 0 → (0 = 𝐴𝜏))
5245, 14, 51vtoclef 2822 . . . 4 (0 = 𝐴𝜏)
5352eqcoms 2190 . . 3 (𝐴 = 0 → 𝜏)
5444, 53jaoi 717 . 2 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → 𝜏)
551, 54sylbi 121 1 (𝐴 ∈ ℕ0𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1363  [wsb 1772  wcel 2158  [wsbc 2974  (class class class)co 5888  0cc0 7824  1c1 7825   + caddc 7827  cn 8932  0cn0 9189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-sep 4133  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-i2m1 7929  ax-0id 7932
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891  df-inn 8933  df-n0 9190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator