ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocleg GIF version

Theorem vtocleg 2835
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
Hypothesis
Ref Expression
vtocleg.1 (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
vtocleg (𝐴𝑉𝜑)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem vtocleg
StepHypRef Expression
1 elisset 2777 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtocleg.1 . . 3 (𝑥 = 𝐴𝜑)
32exlimiv 1612 . 2 (∃𝑥 𝑥 = 𝐴𝜑)
41, 3syl 14 1 (𝐴𝑉𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wex 1506  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765
This theorem is referenced by:  vtocle  2838  spsbc  3001  prexg  4244  funimaexglem  5341  eloprabga  6009  cc3  7335  bj-prexg  15557
  Copyright terms: Public domain W3C validator