Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocleg | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.) |
Ref | Expression |
---|---|
vtocleg.1 | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
vtocleg | ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2726 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | vtocleg.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
3 | 2 | exlimiv 1578 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜑) |
4 | 1, 3 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∃wex 1472 ∈ wcel 2128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-v 2714 |
This theorem is referenced by: vtocle 2786 spsbc 2948 prexg 4170 funimaexglem 5250 eloprabga 5902 cc3 7171 bj-prexg 13445 |
Copyright terms: Public domain | W3C validator |