Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocleg | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.) |
Ref | Expression |
---|---|
vtocleg.1 | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
vtocleg | ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2744 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | vtocleg.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
3 | 2 | exlimiv 1591 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜑) |
4 | 1, 3 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∃wex 1485 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: vtocle 2804 spsbc 2966 prexg 4196 funimaexglem 5281 eloprabga 5940 cc3 7230 bj-prexg 13946 |
Copyright terms: Public domain | W3C validator |