| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtocleg | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| vtocleg.1 | ⊢ (𝑥 = 𝐴 → 𝜑) | 
| Ref | Expression | 
|---|---|
| vtocleg | ⊢ (𝐴 ∈ 𝑉 → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elisset 2777 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | vtocleg.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
| 3 | 2 | exlimiv 1612 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜑) | 
| 4 | 1, 3 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∃wex 1506 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: vtocle 2838 spsbc 3001 prexg 4244 funimaexglem 5341 eloprabga 6009 cc3 7335 bj-prexg 15557 | 
| Copyright terms: Public domain | W3C validator |