![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtocleg | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.) |
Ref | Expression |
---|---|
vtocleg.1 | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
vtocleg | ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2633 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
2 | vtocleg.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
3 | 2 | exlimiv 1534 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 → 𝜑) |
4 | 1, 3 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∃wex 1426 ∈ wcel 1438 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-v 2621 |
This theorem is referenced by: vtocle 2693 spsbc 2851 prexg 4038 funimaexglem 5097 eloprabga 5735 bj-prexg 11757 |
Copyright terms: Public domain | W3C validator |