| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0el | Structured version Visualization version GIF version | ||
| Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.) |
| Ref | Expression |
|---|---|
| 0el | ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset 3208 | . 2 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = ∅) | |
| 2 | eq0 4299 | . . 3 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
| 3 | 2 | rexbii 3080 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: n0el 4313 axinf2 9541 zfinf2 9543 gneispace 44291 |
| Copyright terms: Public domain | W3C validator |