![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0el | Structured version Visualization version GIF version |
Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.) |
Ref | Expression |
---|---|
0el | ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3220 | . 2 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = ∅) | |
2 | eq0 4304 | . . 3 ⊢ (𝑥 = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ 𝑥) | |
3 | 2 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
4 | 1, 3 | bitri 275 | 1 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ¬ 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1540 = wceq 1542 ∈ wcel 2107 ∃wrex 3070 ∅c0 4283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3071 df-dif 3914 df-nul 4284 |
This theorem is referenced by: n0el 4322 axinf2 9581 zfinf2 9583 gneispace 42494 |
Copyright terms: Public domain | W3C validator |