| Step | Hyp | Ref
| Expression |
| 1 | | gneispace.a |
. . 3
⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖
{∅}) ∧ ∀𝑝
∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} |
| 2 | 1 | gneispace3 44146 |
. 2
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅})) ∧ ∀𝑝
∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) |
| 3 | | simpll 767 |
. . . 4
⊢ (((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → Fun 𝐹) |
| 4 | | simplr 769 |
. . . . 5
⊢ (((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅})) |
| 5 | | difss 4136 |
. . . . . 6
⊢
(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})
⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅}) |
| 6 | | difss 4136 |
. . . . . . 7
⊢
(𝒫 dom 𝐹
∖ {∅}) ⊆ 𝒫 dom 𝐹 |
| 7 | 6 | sspwi 4612 |
. . . . . 6
⊢ 𝒫
(𝒫 dom 𝐹 ∖
{∅}) ⊆ 𝒫 𝒫 dom 𝐹 |
| 8 | 5, 7 | sstri 3993 |
. . . . 5
⊢
(𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})
⊆ 𝒫 𝒫 dom 𝐹 |
| 9 | 4, 8 | sstrdi 3996 |
. . . 4
⊢ (((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹) |
| 10 | | simpr 484 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅})) |
| 11 | | simpl 482 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) → Fun 𝐹) |
| 12 | | fvelrn 7096 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑝 ∈ dom 𝐹) → (𝐹‘𝑝) ∈ ran 𝐹) |
| 13 | 11, 12 | sylan 580 |
. . . . . . 7
⊢ (((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) ∧ 𝑝
∈ dom 𝐹) → (𝐹‘𝑝) ∈ ran 𝐹) |
| 14 | | ssel2 3978 |
. . . . . . . 8
⊢ ((ran
𝐹 ⊆ (𝒫
(𝒫 dom 𝐹 ∖
{∅}) ∖ {∅}) ∧ (𝐹‘𝑝) ∈ ran 𝐹) → (𝐹‘𝑝) ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅})) |
| 15 | | eldifsni 4790 |
. . . . . . . 8
⊢ ((𝐹‘𝑝) ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅}) → (𝐹‘𝑝) ≠ ∅) |
| 16 | 14, 15 | syl 17 |
. . . . . . 7
⊢ ((ran
𝐹 ⊆ (𝒫
(𝒫 dom 𝐹 ∖
{∅}) ∖ {∅}) ∧ (𝐹‘𝑝) ∈ ran 𝐹) → (𝐹‘𝑝) ≠ ∅) |
| 17 | 10, 13, 16 | syl2an2r 685 |
. . . . . 6
⊢ (((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) ∧ 𝑝
∈ dom 𝐹) → (𝐹‘𝑝) ≠ ∅) |
| 18 | 17 | ralrimiva 3146 |
. . . . 5
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) |
| 19 | | r19.26 3111 |
. . . . . 6
⊢
(∀𝑝 ∈
dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) ↔ (∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) |
| 20 | 19 | biimpri 228 |
. . . . 5
⊢
((∀𝑝 ∈
dom 𝐹(𝐹‘𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) |
| 21 | 18, 20 | sylan 580 |
. . . 4
⊢ (((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) |
| 22 | 3, 9, 21 | 3jca 1129 |
. . 3
⊢ (((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) |
| 23 | | simp1 1137 |
. . . . 5
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → Fun 𝐹) |
| 24 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑝Fun 𝐹 |
| 25 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑝ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 |
| 26 | | nfra1 3284 |
. . . . . . . . . 10
⊢
Ⅎ𝑝∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) |
| 27 | 24, 25, 26 | nf3an 1901 |
. . . . . . . . 9
⊢
Ⅎ𝑝(Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) |
| 28 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) |
| 29 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) → 𝑝 ∈ 𝑛) |
| 30 | 29 | 19.8ad 2182 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) → ∃𝑝 𝑝 ∈ 𝑛) |
| 31 | 30 | ralimi 3083 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑛 ∈
(𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))) → ∀𝑛 ∈ (𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛) |
| 32 | 28, 31 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → ∀𝑛 ∈ (𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛) |
| 33 | 32 | ralimi 3083 |
. . . . . . . . . . . . . 14
⊢
(∀𝑝 ∈
dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛) |
| 34 | 33 | 3ad2ant3 1136 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛) |
| 35 | | rsp 3247 |
. . . . . . . . . . . . 13
⊢
(∀𝑝 ∈
dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛 → (𝑝 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛)) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (𝑝 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛)) |
| 37 | | df-ex 1780 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑝 𝑝 ∈ 𝑛 ↔ ¬ ∀𝑝 ¬ 𝑝 ∈ 𝑛) |
| 38 | 37 | ralbii 3093 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
(𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛 ↔ ∀𝑛 ∈ (𝐹‘𝑝) ¬ ∀𝑝 ¬ 𝑝 ∈ 𝑛) |
| 39 | | ralnex 3072 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑛 ∈
(𝐹‘𝑝) ¬ ∀𝑝 ¬ 𝑝 ∈ 𝑛 ↔ ¬ ∃𝑛 ∈ (𝐹‘𝑝)∀𝑝 ¬ 𝑝 ∈ 𝑛) |
| 40 | 38, 39 | bitri 275 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑛 ∈
(𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛 ↔ ¬ ∃𝑛 ∈ (𝐹‘𝑝)∀𝑝 ¬ 𝑝 ∈ 𝑛) |
| 41 | | 0el 4363 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
∈ (𝐹‘𝑝) ↔ ∃𝑛 ∈ (𝐹‘𝑝)∀𝑝 ¬ 𝑝 ∈ 𝑛) |
| 42 | 40, 41 | xchbinxr 335 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑛 ∈
(𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛 ↔ ¬ ∅ ∈ (𝐹‘𝑝)) |
| 43 | 42 | biimpi 216 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑛 ∈
(𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛 → ¬ ∅ ∈ (𝐹‘𝑝)) |
| 44 | | elinel1 4201 |
. . . . . . . . . . . . . . 15
⊢ (∅
∈ ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) → ∅ ∈ (𝐹‘𝑝)) |
| 45 | 43, 44 | nsyl 140 |
. . . . . . . . . . . . . 14
⊢
(∀𝑛 ∈
(𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛 → ¬ ∅ ∈ ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹)) |
| 46 | | disjsn 4711 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∩ {∅}) = ∅ ↔ ¬
∅ ∈ ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹)) |
| 47 | 45, 46 | sylibr 234 |
. . . . . . . . . . . . 13
⊢
(∀𝑛 ∈
(𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛 → (((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∩ {∅}) =
∅) |
| 48 | | disjdif2 4480 |
. . . . . . . . . . . . 13
⊢ ((((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∩ {∅}) = ∅ → (((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹)) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
(𝐹‘𝑝)∃𝑝 𝑝 ∈ 𝑛 → (((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹)) |
| 50 | 36, 49 | syl6 35 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (𝑝 ∈ dom 𝐹 → (((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹))) |
| 51 | | simp2 1138 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹) |
| 52 | 12 | ex 412 |
. . . . . . . . . . . . 13
⊢ (Fun
𝐹 → (𝑝 ∈ dom 𝐹 → (𝐹‘𝑝) ∈ ran 𝐹)) |
| 53 | 23, 52 | syl 17 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (𝑝 ∈ dom 𝐹 → (𝐹‘𝑝) ∈ ran 𝐹)) |
| 54 | | ssel2 3978 |
. . . . . . . . . . . . 13
⊢ ((ran
𝐹 ⊆ 𝒫
𝒫 dom 𝐹 ∧
(𝐹‘𝑝) ∈ ran 𝐹) → (𝐹‘𝑝) ∈ 𝒫 𝒫 dom 𝐹) |
| 55 | | fvex 6919 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘𝑝) ∈ V |
| 56 | 55 | elpw 4604 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑝) ∈ 𝒫 𝒫 dom 𝐹 ↔ (𝐹‘𝑝) ⊆ 𝒫 dom 𝐹) |
| 57 | | dfss2 3969 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑝) ⊆ 𝒫 dom 𝐹 ↔ ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) = (𝐹‘𝑝)) |
| 58 | 56, 57 | sylbb 219 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑝) ∈ 𝒫 𝒫 dom 𝐹 → ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) = (𝐹‘𝑝)) |
| 59 | 54, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ ((ran
𝐹 ⊆ 𝒫
𝒫 dom 𝐹 ∧
(𝐹‘𝑝) ∈ ran 𝐹) → ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) = (𝐹‘𝑝)) |
| 60 | 51, 53, 59 | syl6an 684 |
. . . . . . . . . . 11
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (𝑝 ∈ dom 𝐹 → ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) = (𝐹‘𝑝))) |
| 61 | 50, 60 | jcad 512 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (𝑝 ∈ dom 𝐹 → ((((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∧ ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) = (𝐹‘𝑝)))) |
| 62 | | eqtr 2760 |
. . . . . . . . . . 11
⊢
(((((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∧ ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) = (𝐹‘𝑝)) → (((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = (𝐹‘𝑝)) |
| 63 | | dfss2 3969 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ ((𝐹‘𝑝) ∩ (𝒫 dom 𝐹 ∖ {∅})) = (𝐹‘𝑝)) |
| 64 | | indif2 4281 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑝) ∩ (𝒫 dom 𝐹 ∖ {∅})) = (((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) |
| 65 | 64 | eqeq1i 2742 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑝) ∩ (𝒫 dom 𝐹 ∖ {∅})) = (𝐹‘𝑝) ↔ (((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = (𝐹‘𝑝)) |
| 66 | 63, 65 | bitri 275 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ (((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = (𝐹‘𝑝)) |
| 67 | 62, 66 | sylibr 234 |
. . . . . . . . . 10
⊢
(((((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) ∧ ((𝐹‘𝑝) ∩ 𝒫 dom 𝐹) = (𝐹‘𝑝)) → (𝐹‘𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})) |
| 68 | 61, 67 | syl6 35 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (𝑝 ∈ dom 𝐹 → (𝐹‘𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}))) |
| 69 | 27, 68 | ralrimi 3257 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})) |
| 70 | 23 | funfnd 6597 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → 𝐹 Fn dom 𝐹) |
| 71 | | sseq1 4009 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘𝑝) → (𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ (𝐹‘𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}))) |
| 72 | 71 | ralrn 7108 |
. . . . . . . . 9
⊢ (𝐹 Fn dom 𝐹 → (∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}))) |
| 73 | 70, 72 | syl 17 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}))) |
| 74 | 69, 73 | mpbird 257 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → ∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅})) |
| 75 | | pwssb 5101 |
. . . . . . 7
⊢ (ran
𝐹 ⊆ 𝒫
(𝒫 dom 𝐹 ∖
{∅}) ↔ ∀𝑥
∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖
{∅})) |
| 76 | 74, 75 | sylibr 234 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → ran 𝐹 ⊆ 𝒫 (𝒫 dom 𝐹 ∖
{∅})) |
| 77 | | simpl 482 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → (𝐹‘𝑝) ≠ ∅) |
| 78 | 77 | ralimi 3083 |
. . . . . . . . 9
⊢
(∀𝑝 ∈
dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) |
| 79 | 78 | 3ad2ant3 1136 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) |
| 80 | 23, 79 | jca 511 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (Fun 𝐹 ∧ ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅)) |
| 81 | | elrnrexdm 7109 |
. . . . . . . . . 10
⊢ (Fun
𝐹 → (∅ ∈
ran 𝐹 → ∃𝑝 ∈ dom 𝐹∅ = (𝐹‘𝑝))) |
| 82 | | nesym 2997 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑝) ≠ ∅ ↔ ¬ ∅ = (𝐹‘𝑝)) |
| 83 | 82 | ralbii 3093 |
. . . . . . . . . . 11
⊢
(∀𝑝 ∈
dom 𝐹(𝐹‘𝑝) ≠ ∅ ↔ ∀𝑝 ∈ dom 𝐹 ¬ ∅ = (𝐹‘𝑝)) |
| 84 | | ralnex 3072 |
. . . . . . . . . . 11
⊢
(∀𝑝 ∈
dom 𝐹 ¬ ∅ =
(𝐹‘𝑝) ↔ ¬ ∃𝑝 ∈ dom 𝐹∅ = (𝐹‘𝑝)) |
| 85 | 83, 84 | sylbb 219 |
. . . . . . . . . 10
⊢
(∀𝑝 ∈
dom 𝐹(𝐹‘𝑝) ≠ ∅ → ¬ ∃𝑝 ∈ dom 𝐹∅ = (𝐹‘𝑝)) |
| 86 | 81, 85 | nsyli 157 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅ → ¬ ∅ ∈
ran 𝐹)) |
| 87 | 86 | imp 406 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) → ¬ ∅ ∈
ran 𝐹) |
| 88 | | disjsn 4711 |
. . . . . . . 8
⊢ ((ran
𝐹 ∩ {∅}) =
∅ ↔ ¬ ∅ ∈ ran 𝐹) |
| 89 | 87, 88 | sylibr 234 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) → (ran 𝐹 ∩ {∅}) =
∅) |
| 90 | 80, 89 | syl 17 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (ran 𝐹 ∩ {∅}) =
∅) |
| 91 | | reldisj 4453 |
. . . . . . 7
⊢ (ran
𝐹 ⊆ 𝒫
(𝒫 dom 𝐹 ∖
{∅}) → ((ran 𝐹
∩ {∅}) = ∅ ↔ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅}))) |
| 92 | 91 | biimpd 229 |
. . . . . 6
⊢ (ran
𝐹 ⊆ 𝒫
(𝒫 dom 𝐹 ∖
{∅}) → ((ran 𝐹
∩ {∅}) = ∅ → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅}))) |
| 93 | 76, 90, 92 | sylc 65 |
. . . . 5
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅})) |
| 94 | 23, 93 | jca 511 |
. . . 4
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅}))) |
| 95 | 19 | biimpi 216 |
. . . . . 6
⊢
(∀𝑝 ∈
dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → (∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) |
| 96 | 95 | 3ad2ant3 1136 |
. . . . 5
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → (∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) |
| 97 | | simpr 484 |
. . . . 5
⊢
((∀𝑝 ∈
dom 𝐹(𝐹‘𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) |
| 98 | 96, 97 | syl 17 |
. . . 4
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) |
| 99 | 94, 98 | jca 511 |
. . 3
⊢ ((Fun
𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom
𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) → ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖
{∅})) ∧ ∀𝑝
∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))) |
| 100 | 22, 99 | impbii 209 |
. 2
⊢ (((Fun
𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫
dom 𝐹 ∖ {∅})
∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))) ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝)))))) |
| 101 | 2, 100 | bitrdi 287 |
1
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹‘𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝐹‘𝑝))))))) |