Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace Structured version   Visualization version   GIF version

Theorem gneispace 39792
Description: The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 14-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace (𝐹𝑉 → (𝐹𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))))
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝   𝑉,𝑝
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑉(𝑓,𝑛,𝑠)

Proof of Theorem gneispace
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gneispace.a . . 3 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispace3 39791 . 2 (𝐹𝑉 → (𝐹𝐴 ↔ ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
3 simpll 754 . . . 4 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → Fun 𝐹)
4 simplr 756 . . . . 5 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
5 difss 3994 . . . . . 6 (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅})
6 difss 3994 . . . . . . 7 (𝒫 dom 𝐹 ∖ {∅}) ⊆ 𝒫 dom 𝐹
7 sspwb 5191 . . . . . . 7 ((𝒫 dom 𝐹 ∖ {∅}) ⊆ 𝒫 dom 𝐹 ↔ 𝒫 (𝒫 dom 𝐹 ∖ {∅}) ⊆ 𝒫 𝒫 dom 𝐹)
86, 7mpbi 222 . . . . . 6 𝒫 (𝒫 dom 𝐹 ∖ {∅}) ⊆ 𝒫 𝒫 dom 𝐹
95, 8sstri 3863 . . . . 5 (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ⊆ 𝒫 𝒫 dom 𝐹
104, 9syl6ss 3866 . . . 4 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹)
11 simpr 477 . . . . . . 7 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
12 simpl 475 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) → Fun 𝐹)
13 fvelrn 6663 . . . . . . . 8 ((Fun 𝐹𝑝 ∈ dom 𝐹) → (𝐹𝑝) ∈ ran 𝐹)
1412, 13sylan 572 . . . . . . 7 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ 𝑝 ∈ dom 𝐹) → (𝐹𝑝) ∈ ran 𝐹)
15 ssel2 3849 . . . . . . . 8 ((ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ (𝐹𝑝) ∈ ran 𝐹) → (𝐹𝑝) ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
16 eldifsni 4590 . . . . . . . 8 ((𝐹𝑝) ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → (𝐹𝑝) ≠ ∅)
1715, 16syl 17 . . . . . . 7 ((ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ (𝐹𝑝) ∈ ran 𝐹) → (𝐹𝑝) ≠ ∅)
1811, 14, 17syl2an2r 672 . . . . . 6 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ 𝑝 ∈ dom 𝐹) → (𝐹𝑝) ≠ ∅)
1918ralrimiva 3126 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
20 r19.26 3114 . . . . . 6 (∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) ↔ (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
2120biimpri 220 . . . . 5 ((∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
2219, 21sylan 572 . . . 4 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
233, 10, 223jca 1108 . . 3 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
24 simp1 1116 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → Fun 𝐹)
25 nfv 1873 . . . . . . . . . 10 𝑝Fun 𝐹
26 nfv 1873 . . . . . . . . . 10 𝑝ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹
27 nfra1 3163 . . . . . . . . . 10 𝑝𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
2825, 26, 27nf3an 1864 . . . . . . . . 9 𝑝(Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
29 simpr 477 . . . . . . . . . . . . . . . 16 (((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
30 simpl 475 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))) → 𝑝𝑛)
313019.8ad 2108 . . . . . . . . . . . . . . . . 17 ((𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))) → ∃𝑝 𝑝𝑛)
3231ralimi 3104 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))) → ∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛)
3329, 32syl 17 . . . . . . . . . . . . . . 15 (((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛)
3433ralimi 3104 . . . . . . . . . . . . . 14 (∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛)
35343ad2ant3 1115 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛)
36 rsp 3149 . . . . . . . . . . . . 13 (∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → (𝑝 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛))
3735, 36syl 17 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛))
38 df-ex 1743 . . . . . . . . . . . . . . . . . . 19 (∃𝑝 𝑝𝑛 ↔ ¬ ∀𝑝 ¬ 𝑝𝑛)
3938ralbii 3109 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 ↔ ∀𝑛 ∈ (𝐹𝑝) ¬ ∀𝑝 ¬ 𝑝𝑛)
40 ralnex 3177 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ (𝐹𝑝) ¬ ∀𝑝 ¬ 𝑝𝑛 ↔ ¬ ∃𝑛 ∈ (𝐹𝑝)∀𝑝 ¬ 𝑝𝑛)
4139, 40bitri 267 . . . . . . . . . . . . . . . . 17 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 ↔ ¬ ∃𝑛 ∈ (𝐹𝑝)∀𝑝 ¬ 𝑝𝑛)
42 0el 4201 . . . . . . . . . . . . . . . . 17 (∅ ∈ (𝐹𝑝) ↔ ∃𝑛 ∈ (𝐹𝑝)∀𝑝 ¬ 𝑝𝑛)
4341, 42xchbinxr 327 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 ↔ ¬ ∅ ∈ (𝐹𝑝))
4443biimpi 208 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → ¬ ∅ ∈ (𝐹𝑝))
45 elinel1 4056 . . . . . . . . . . . . . . 15 (∅ ∈ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) → ∅ ∈ (𝐹𝑝))
4644, 45nsyl 138 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → ¬ ∅ ∈ ((𝐹𝑝) ∩ 𝒫 dom 𝐹))
47 disjsn 4515 . . . . . . . . . . . . . 14 ((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ((𝐹𝑝) ∩ 𝒫 dom 𝐹))
4846, 47sylibr 226 . . . . . . . . . . . . 13 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∩ {∅}) = ∅)
49 disjdif2 4305 . . . . . . . . . . . . 13 ((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∩ {∅}) = ∅ → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹))
5048, 49syl 17 . . . . . . . . . . . 12 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹))
5137, 50syl6 35 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹)))
52 simp2 1117 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹)
5313ex 405 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝑝 ∈ dom 𝐹 → (𝐹𝑝) ∈ ran 𝐹))
5424, 53syl 17 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → (𝐹𝑝) ∈ ran 𝐹))
55 ssel2 3849 . . . . . . . . . . . . 13 ((ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ (𝐹𝑝) ∈ ran 𝐹) → (𝐹𝑝) ∈ 𝒫 𝒫 dom 𝐹)
56 fvex 6506 . . . . . . . . . . . . . . 15 (𝐹𝑝) ∈ V
5756elpw 4422 . . . . . . . . . . . . . 14 ((𝐹𝑝) ∈ 𝒫 𝒫 dom 𝐹 ↔ (𝐹𝑝) ⊆ 𝒫 dom 𝐹)
58 df-ss 3839 . . . . . . . . . . . . . 14 ((𝐹𝑝) ⊆ 𝒫 dom 𝐹 ↔ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝))
5957, 58sylbb 211 . . . . . . . . . . . . 13 ((𝐹𝑝) ∈ 𝒫 𝒫 dom 𝐹 → ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝))
6055, 59syl 17 . . . . . . . . . . . 12 ((ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ (𝐹𝑝) ∈ ran 𝐹) → ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝))
6152, 54, 60syl6an 671 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝)))
6251, 61jcad 505 . . . . . . . . . 10 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → ((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∧ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝))))
63 eqtr 2793 . . . . . . . . . . 11 (((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∧ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝)) → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = (𝐹𝑝))
64 df-ss 3839 . . . . . . . . . . . 12 ((𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ ((𝐹𝑝) ∩ (𝒫 dom 𝐹 ∖ {∅})) = (𝐹𝑝))
65 indif2 4129 . . . . . . . . . . . . 13 ((𝐹𝑝) ∩ (𝒫 dom 𝐹 ∖ {∅})) = (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅})
6665eqeq1i 2777 . . . . . . . . . . . 12 (((𝐹𝑝) ∩ (𝒫 dom 𝐹 ∖ {∅})) = (𝐹𝑝) ↔ (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = (𝐹𝑝))
6764, 66bitri 267 . . . . . . . . . . 11 ((𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = (𝐹𝑝))
6863, 67sylibr 226 . . . . . . . . . 10 (((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∧ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝)) → (𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}))
6962, 68syl6 35 . . . . . . . . 9 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → (𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})))
7028, 69ralrimi 3160 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}))
7124funfnd 6213 . . . . . . . . 9 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → 𝐹 Fn dom 𝐹)
72 sseq1 3878 . . . . . . . . . 10 (𝑥 = (𝐹𝑝) → (𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ (𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})))
7372ralrn 6673 . . . . . . . . 9 (𝐹 Fn dom 𝐹 → (∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})))
7471, 73syl 17 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})))
7570, 74mpbird 249 . . . . . . 7 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}))
76 pwssb 4883 . . . . . . 7 (ran 𝐹 ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅}) ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}))
7775, 76sylibr 226 . . . . . 6 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ran 𝐹 ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅}))
78 simpl 475 . . . . . . . . . 10 (((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → (𝐹𝑝) ≠ ∅)
7978ralimi 3104 . . . . . . . . 9 (∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
80793ad2ant3 1115 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
8124, 80jca 504 . . . . . . 7 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (Fun 𝐹 ∧ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅))
82 elrnrexdm 6674 . . . . . . . . . 10 (Fun 𝐹 → (∅ ∈ ran 𝐹 → ∃𝑝 ∈ dom 𝐹∅ = (𝐹𝑝)))
83 nesym 3017 . . . . . . . . . . . 12 ((𝐹𝑝) ≠ ∅ ↔ ¬ ∅ = (𝐹𝑝))
8483ralbii 3109 . . . . . . . . . . 11 (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ↔ ∀𝑝 ∈ dom 𝐹 ¬ ∅ = (𝐹𝑝))
85 ralnex 3177 . . . . . . . . . . 11 (∀𝑝 ∈ dom 𝐹 ¬ ∅ = (𝐹𝑝) ↔ ¬ ∃𝑝 ∈ dom 𝐹∅ = (𝐹𝑝))
8684, 85sylbb 211 . . . . . . . . . 10 (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ → ¬ ∃𝑝 ∈ dom 𝐹∅ = (𝐹𝑝))
8782, 86nsyli 157 . . . . . . . . 9 (Fun 𝐹 → (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ → ¬ ∅ ∈ ran 𝐹))
8887imp 398 . . . . . . . 8 ((Fun 𝐹 ∧ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅) → ¬ ∅ ∈ ran 𝐹)
89 disjsn 4515 . . . . . . . 8 ((ran 𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ran 𝐹)
9088, 89sylibr 226 . . . . . . 7 ((Fun 𝐹 ∧ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅) → (ran 𝐹 ∩ {∅}) = ∅)
9181, 90syl 17 . . . . . 6 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (ran 𝐹 ∩ {∅}) = ∅)
92 reldisj 4279 . . . . . . 7 (ran 𝐹 ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅}) → ((ran 𝐹 ∩ {∅}) = ∅ ↔ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
9392biimpd 221 . . . . . 6 (ran 𝐹 ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅}) → ((ran 𝐹 ∩ {∅}) = ∅ → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
9477, 91, 93sylc 65 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
9524, 94jca 504 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
9620biimpi 208 . . . . . 6 (∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
97963ad2ant3 1115 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
98 simpr 477 . . . . 5 ((∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
9997, 98syl 17 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
10095, 99jca 504 . . 3 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
10123, 100impbii 201 . 2 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
1022, 101syl6bb 279 1 (𝐹𝑉 → (𝐹𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068  wal 1505   = wceq 1507  wex 1742  wcel 2048  {cab 2753  wne 2961  wral 3082  wrex 3083  cdif 3822  cin 3824  wss 3825  c0 4173  𝒫 cpw 4416  {csn 4435  dom cdm 5400  ran crn 5401  Fun wfun 6176   Fn wfn 6177  wf 6178  cfv 6182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-fv 6190
This theorem is referenced by:  gneispacef2  39794  gneispacern2  39797  gneispace0nelrn  39798
  Copyright terms: Public domain W3C validator