Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace Structured version   Visualization version   GIF version

Theorem gneispace 40491
Description: The predicate that 𝐹 is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 14-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace (𝐹𝑉 → (𝐹𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))))
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝   𝑉,𝑝
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑉(𝑓,𝑛,𝑠)

Proof of Theorem gneispace
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gneispace.a . . 3 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispace3 40490 . 2 (𝐹𝑉 → (𝐹𝐴 ↔ ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
3 simpll 765 . . . 4 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → Fun 𝐹)
4 simplr 767 . . . . 5 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
5 difss 4110 . . . . . 6 (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅})
6 difss 4110 . . . . . . 7 (𝒫 dom 𝐹 ∖ {∅}) ⊆ 𝒫 dom 𝐹
76sspwi 4555 . . . . . 6 𝒫 (𝒫 dom 𝐹 ∖ {∅}) ⊆ 𝒫 𝒫 dom 𝐹
85, 7sstri 3978 . . . . 5 (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ⊆ 𝒫 𝒫 dom 𝐹
94, 8sstrdi 3981 . . . 4 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹)
10 simpr 487 . . . . . . 7 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
11 simpl 485 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) → Fun 𝐹)
12 fvelrn 6846 . . . . . . . 8 ((Fun 𝐹𝑝 ∈ dom 𝐹) → (𝐹𝑝) ∈ ran 𝐹)
1311, 12sylan 582 . . . . . . 7 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ 𝑝 ∈ dom 𝐹) → (𝐹𝑝) ∈ ran 𝐹)
14 ssel2 3964 . . . . . . . 8 ((ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ (𝐹𝑝) ∈ ran 𝐹) → (𝐹𝑝) ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
15 eldifsni 4724 . . . . . . . 8 ((𝐹𝑝) ∈ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) → (𝐹𝑝) ≠ ∅)
1614, 15syl 17 . . . . . . 7 ((ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}) ∧ (𝐹𝑝) ∈ ran 𝐹) → (𝐹𝑝) ≠ ∅)
1710, 13, 16syl2an2r 683 . . . . . 6 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ 𝑝 ∈ dom 𝐹) → (𝐹𝑝) ≠ ∅)
1817ralrimiva 3184 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
19 r19.26 3172 . . . . . 6 (∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) ↔ (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
2019biimpri 230 . . . . 5 ((∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
2118, 20sylan 582 . . . 4 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
223, 9, 213jca 1124 . . 3 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
23 simp1 1132 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → Fun 𝐹)
24 nfv 1915 . . . . . . . . . 10 𝑝Fun 𝐹
25 nfv 1915 . . . . . . . . . 10 𝑝ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹
26 nfra1 3221 . . . . . . . . . 10 𝑝𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
2724, 25, 26nf3an 1902 . . . . . . . . 9 𝑝(Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
28 simpr 487 . . . . . . . . . . . . . . . 16 (((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
29 simpl 485 . . . . . . . . . . . . . . . . . 18 ((𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))) → 𝑝𝑛)
302919.8ad 2181 . . . . . . . . . . . . . . . . 17 ((𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))) → ∃𝑝 𝑝𝑛)
3130ralimi 3162 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))) → ∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛)
3228, 31syl 17 . . . . . . . . . . . . . . 15 (((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛)
3332ralimi 3162 . . . . . . . . . . . . . 14 (∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛)
34333ad2ant3 1131 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛)
35 rsp 3207 . . . . . . . . . . . . 13 (∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → (𝑝 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛))
3634, 35syl 17 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → ∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛))
37 df-ex 1781 . . . . . . . . . . . . . . . . . . 19 (∃𝑝 𝑝𝑛 ↔ ¬ ∀𝑝 ¬ 𝑝𝑛)
3837ralbii 3167 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 ↔ ∀𝑛 ∈ (𝐹𝑝) ¬ ∀𝑝 ¬ 𝑝𝑛)
39 ralnex 3238 . . . . . . . . . . . . . . . . . 18 (∀𝑛 ∈ (𝐹𝑝) ¬ ∀𝑝 ¬ 𝑝𝑛 ↔ ¬ ∃𝑛 ∈ (𝐹𝑝)∀𝑝 ¬ 𝑝𝑛)
4038, 39bitri 277 . . . . . . . . . . . . . . . . 17 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 ↔ ¬ ∃𝑛 ∈ (𝐹𝑝)∀𝑝 ¬ 𝑝𝑛)
41 0el 4322 . . . . . . . . . . . . . . . . 17 (∅ ∈ (𝐹𝑝) ↔ ∃𝑛 ∈ (𝐹𝑝)∀𝑝 ¬ 𝑝𝑛)
4240, 41xchbinxr 337 . . . . . . . . . . . . . . . 16 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 ↔ ¬ ∅ ∈ (𝐹𝑝))
4342biimpi 218 . . . . . . . . . . . . . . 15 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → ¬ ∅ ∈ (𝐹𝑝))
44 elinel1 4174 . . . . . . . . . . . . . . 15 (∅ ∈ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) → ∅ ∈ (𝐹𝑝))
4543, 44nsyl 142 . . . . . . . . . . . . . 14 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → ¬ ∅ ∈ ((𝐹𝑝) ∩ 𝒫 dom 𝐹))
46 disjsn 4649 . . . . . . . . . . . . . 14 ((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ((𝐹𝑝) ∩ 𝒫 dom 𝐹))
4745, 46sylibr 236 . . . . . . . . . . . . 13 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∩ {∅}) = ∅)
48 disjdif2 4430 . . . . . . . . . . . . 13 ((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∩ {∅}) = ∅ → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹))
4947, 48syl 17 . . . . . . . . . . . 12 (∀𝑛 ∈ (𝐹𝑝)∃𝑝 𝑝𝑛 → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹))
5036, 49syl6 35 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹)))
51 simp2 1133 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹)
5212ex 415 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝑝 ∈ dom 𝐹 → (𝐹𝑝) ∈ ran 𝐹))
5323, 52syl 17 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → (𝐹𝑝) ∈ ran 𝐹))
54 ssel2 3964 . . . . . . . . . . . . 13 ((ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ (𝐹𝑝) ∈ ran 𝐹) → (𝐹𝑝) ∈ 𝒫 𝒫 dom 𝐹)
55 fvex 6685 . . . . . . . . . . . . . . 15 (𝐹𝑝) ∈ V
5655elpw 4545 . . . . . . . . . . . . . 14 ((𝐹𝑝) ∈ 𝒫 𝒫 dom 𝐹 ↔ (𝐹𝑝) ⊆ 𝒫 dom 𝐹)
57 df-ss 3954 . . . . . . . . . . . . . 14 ((𝐹𝑝) ⊆ 𝒫 dom 𝐹 ↔ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝))
5856, 57sylbb 221 . . . . . . . . . . . . 13 ((𝐹𝑝) ∈ 𝒫 𝒫 dom 𝐹 → ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝))
5954, 58syl 17 . . . . . . . . . . . 12 ((ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ (𝐹𝑝) ∈ ran 𝐹) → ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝))
6051, 53, 59syl6an 682 . . . . . . . . . . 11 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝)))
6150, 60jcad 515 . . . . . . . . . 10 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → ((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∧ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝))))
62 eqtr 2843 . . . . . . . . . . 11 (((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∧ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝)) → (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = (𝐹𝑝))
63 df-ss 3954 . . . . . . . . . . . 12 ((𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ ((𝐹𝑝) ∩ (𝒫 dom 𝐹 ∖ {∅})) = (𝐹𝑝))
64 indif2 4249 . . . . . . . . . . . . 13 ((𝐹𝑝) ∩ (𝒫 dom 𝐹 ∖ {∅})) = (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅})
6564eqeq1i 2828 . . . . . . . . . . . 12 (((𝐹𝑝) ∩ (𝒫 dom 𝐹 ∖ {∅})) = (𝐹𝑝) ↔ (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = (𝐹𝑝))
6663, 65bitri 277 . . . . . . . . . . 11 ((𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ (((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = (𝐹𝑝))
6762, 66sylibr 236 . . . . . . . . . 10 (((((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∖ {∅}) = ((𝐹𝑝) ∩ 𝒫 dom 𝐹) ∧ ((𝐹𝑝) ∩ 𝒫 dom 𝐹) = (𝐹𝑝)) → (𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}))
6861, 67syl6 35 . . . . . . . . 9 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (𝑝 ∈ dom 𝐹 → (𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})))
6927, 68ralrimi 3218 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅}))
7023funfnd 6388 . . . . . . . . 9 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → 𝐹 Fn dom 𝐹)
71 sseq1 3994 . . . . . . . . . 10 (𝑥 = (𝐹𝑝) → (𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ (𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})))
7271ralrn 6856 . . . . . . . . 9 (𝐹 Fn dom 𝐹 → (∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})))
7370, 72syl 17 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}) ↔ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ⊆ (𝒫 dom 𝐹 ∖ {∅})))
7469, 73mpbird 259 . . . . . . 7 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}))
75 pwssb 5025 . . . . . . 7 (ran 𝐹 ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅}) ↔ ∀𝑥 ∈ ran 𝐹 𝑥 ⊆ (𝒫 dom 𝐹 ∖ {∅}))
7674, 75sylibr 236 . . . . . 6 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ran 𝐹 ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅}))
77 simpl 485 . . . . . . . . . 10 (((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → (𝐹𝑝) ≠ ∅)
7877ralimi 3162 . . . . . . . . 9 (∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
79783ad2ant3 1131 . . . . . . . 8 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
8023, 79jca 514 . . . . . . 7 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (Fun 𝐹 ∧ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅))
81 elrnrexdm 6857 . . . . . . . . . 10 (Fun 𝐹 → (∅ ∈ ran 𝐹 → ∃𝑝 ∈ dom 𝐹∅ = (𝐹𝑝)))
82 nesym 3074 . . . . . . . . . . . 12 ((𝐹𝑝) ≠ ∅ ↔ ¬ ∅ = (𝐹𝑝))
8382ralbii 3167 . . . . . . . . . . 11 (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ↔ ∀𝑝 ∈ dom 𝐹 ¬ ∅ = (𝐹𝑝))
84 ralnex 3238 . . . . . . . . . . 11 (∀𝑝 ∈ dom 𝐹 ¬ ∅ = (𝐹𝑝) ↔ ¬ ∃𝑝 ∈ dom 𝐹∅ = (𝐹𝑝))
8583, 84sylbb 221 . . . . . . . . . 10 (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ → ¬ ∃𝑝 ∈ dom 𝐹∅ = (𝐹𝑝))
8681, 85nsyli 160 . . . . . . . . 9 (Fun 𝐹 → (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ → ¬ ∅ ∈ ran 𝐹))
8786imp 409 . . . . . . . 8 ((Fun 𝐹 ∧ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅) → ¬ ∅ ∈ ran 𝐹)
88 disjsn 4649 . . . . . . . 8 ((ran 𝐹 ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ran 𝐹)
8987, 88sylibr 236 . . . . . . 7 ((Fun 𝐹 ∧ ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅) → (ran 𝐹 ∩ {∅}) = ∅)
9080, 89syl 17 . . . . . 6 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (ran 𝐹 ∩ {∅}) = ∅)
91 reldisj 4404 . . . . . . 7 (ran 𝐹 ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅}) → ((ran 𝐹 ∩ {∅}) = ∅ ↔ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
9291biimpd 231 . . . . . 6 (ran 𝐹 ⊆ 𝒫 (𝒫 dom 𝐹 ∖ {∅}) → ((ran 𝐹 ∩ {∅}) = ∅ → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
9376, 90, 92sylc 65 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅}))
9423, 93jca 514 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})))
9519biimpi 218 . . . . . 6 (∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
96953ad2ant3 1131 . . . . 5 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
97 simpr 487 . . . . 5 ((∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
9896, 97syl 17 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))
9994, 98jca 514 . . 3 ((Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))) → ((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))
10022, 99impbii 211 . 2 (((Fun 𝐹 ∧ ran 𝐹 ⊆ (𝒫 (𝒫 dom 𝐹 ∖ {∅}) ∖ {∅})) ∧ ∀𝑝 ∈ dom 𝐹𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))) ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝))))))
1012, 100syl6bb 289 1 (𝐹𝑉 → (𝐹𝐴 ↔ (Fun 𝐹 ∧ ran 𝐹 ⊆ 𝒫 𝒫 dom 𝐹 ∧ ∀𝑝 ∈ dom 𝐹((𝐹𝑝) ≠ ∅ ∧ ∀𝑛 ∈ (𝐹𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝐹(𝑛𝑠𝑠 ∈ (𝐹𝑝)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569  dom cdm 5557  ran crn 5558  Fun wfun 6351   Fn wfn 6352  wf 6353  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365
This theorem is referenced by:  gneispacef2  40493  gneispacern2  40496  gneispace0nelrn  40497
  Copyright terms: Public domain W3C validator