| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmo0 | Structured version Visualization version GIF version | ||
| Description: Vacuous restricted at-most-one quantifier is always true. (Contributed by AV, 3-Apr-2023.) |
| Ref | Expression |
|---|---|
| rmo0 | ⊢ ∃*𝑥 ∈ ∅ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rex0 4340 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 | |
| 2 | 1 | pm2.21i 119 | . 2 ⊢ (∃𝑥 ∈ ∅ 𝜑 → ∃!𝑥 ∈ ∅ 𝜑) |
| 3 | rmo5 3384 | . 2 ⊢ (∃*𝑥 ∈ ∅ 𝜑 ↔ (∃𝑥 ∈ ∅ 𝜑 → ∃!𝑥 ∈ ∅ 𝜑)) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ ∃*𝑥 ∈ ∅ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wrex 3061 ∃!wreu 3362 ∃*wrmo 3363 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: rmosn 4700 |
| Copyright terms: Public domain | W3C validator |