![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmo0 | Structured version Visualization version GIF version |
Description: Vacuous restricted at-most-one quantifier is always true. (Contributed by AV, 3-Apr-2023.) |
Ref | Expression |
---|---|
rmo0 | ⊢ ∃*𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4354 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (∃𝑥 ∈ ∅ 𝜑 → ∃!𝑥 ∈ ∅ 𝜑) |
3 | rmo5 3392 | . 2 ⊢ (∃*𝑥 ∈ ∅ 𝜑 ↔ (∃𝑥 ∈ ∅ 𝜑 → ∃!𝑥 ∈ ∅ 𝜑)) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ ∃*𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3066 ∃!wreu 3370 ∃*wrmo 3371 ∅c0 4319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-dif 3948 df-nul 4320 |
This theorem is referenced by: rmosn 4720 |
Copyright terms: Public domain | W3C validator |