![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmo0 | Structured version Visualization version GIF version |
Description: Vacuous restricted at-most-one quantifier is always true. (Contributed by AV, 3-Apr-2023.) |
Ref | Expression |
---|---|
rmo0 | ⊢ ∃*𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 4366 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝜑 | |
2 | 1 | pm2.21i 119 | . 2 ⊢ (∃𝑥 ∈ ∅ 𝜑 → ∃!𝑥 ∈ ∅ 𝜑) |
3 | rmo5 3398 | . 2 ⊢ (∃*𝑥 ∈ ∅ 𝜑 ↔ (∃𝑥 ∈ ∅ 𝜑 → ∃!𝑥 ∈ ∅ 𝜑)) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ ∃*𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wrex 3068 ∃!wreu 3376 ∃*wrmo 3377 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-dif 3966 df-nul 4340 |
This theorem is referenced by: rmosn 4724 |
Copyright terms: Public domain | W3C validator |