Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0pss | Structured version Visualization version GIF version |
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
0pss | ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4336 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | df-pss 3911 | . . 3 ⊢ (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴)) | |
3 | 1, 2 | mpbiran 707 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴) |
4 | necom 2995 | . 2 ⊢ (∅ ≠ 𝐴 ↔ 𝐴 ≠ ∅) | |
5 | 3, 4 | bitri 275 | 1 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ≠ wne 2941 ⊆ wss 3892 ⊊ wpss 3893 ∅c0 4262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 |
This theorem is referenced by: php 9031 phpOLD 9043 zornn0g 10307 prn0 10791 genpn0 10805 nqpr 10816 ltexprlem5 10842 reclem2pr 10850 suplem1pr 10854 alexsubALTlem4 23246 bj-2upln0 35257 bj-2upln1upl 35258 0pssin 41417 |
Copyright terms: Public domain | W3C validator |