Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0pss | Structured version Visualization version GIF version |
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
0pss | ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4335 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | df-pss 3910 | . . 3 ⊢ (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴)) | |
3 | 1, 2 | mpbiran 705 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴) |
4 | necom 2998 | . 2 ⊢ (∅ ≠ 𝐴 ↔ 𝐴 ≠ ∅) | |
5 | 3, 4 | bitri 274 | 1 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ≠ wne 2944 ⊆ wss 3891 ⊊ wpss 3892 ∅c0 4261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 |
This theorem is referenced by: php 8957 phpOLD 8970 zornn0g 10245 prn0 10729 genpn0 10743 nqpr 10754 ltexprlem5 10780 reclem2pr 10788 suplem1pr 10792 alexsubALTlem4 23182 bj-2upln0 35192 bj-2upln1upl 35193 0pssin 41332 |
Copyright terms: Public domain | W3C validator |