![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pss | Structured version Visualization version GIF version |
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
0pss | ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4406 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | df-pss 3983 | . . 3 ⊢ (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴)) | |
3 | 1, 2 | mpbiran 709 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴) |
4 | necom 2992 | . 2 ⊢ (∅ ≠ 𝐴 ↔ 𝐴 ≠ ∅) | |
5 | 3, 4 | bitri 275 | 1 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ≠ wne 2938 ⊆ wss 3963 ⊊ wpss 3964 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-dif 3966 df-ss 3980 df-pss 3983 df-nul 4340 |
This theorem is referenced by: php 9245 phpOLD 9257 zornn0g 10543 prn0 11027 genpn0 11041 nqpr 11052 ltexprlem5 11078 reclem2pr 11086 suplem1pr 11090 alexsubALTlem4 24074 bj-2upln0 37006 bj-2upln1upl 37007 0pssin 43761 |
Copyright terms: Public domain | W3C validator |