![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0pss | Structured version Visualization version GIF version |
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
0pss | ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4198 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
2 | df-pss 3808 | . . 3 ⊢ (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴)) | |
3 | 1, 2 | mpbiran 699 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴) |
4 | necom 3022 | . 2 ⊢ (∅ ≠ 𝐴 ↔ 𝐴 ≠ ∅) | |
5 | 3, 4 | bitri 267 | 1 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ≠ wne 2969 ⊆ wss 3792 ⊊ wpss 3793 ∅c0 4141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-ne 2970 df-dif 3795 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 |
This theorem is referenced by: php 8432 zornn0g 9662 prn0 10146 genpn0 10160 nqpr 10171 ltexprlem5 10197 reclem2pr 10205 suplem1pr 10209 alexsubALTlem4 22262 bj-2upln0 33583 bj-2upln1upl 33584 0pssin 39020 |
Copyright terms: Public domain | W3C validator |