MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pss Structured version   Visualization version   GIF version

Theorem 0pss 4470
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.)
Assertion
Ref Expression
0pss (∅ ⊊ 𝐴𝐴 ≠ ∅)

Proof of Theorem 0pss
StepHypRef Expression
1 0ss 4423 . . 3 ∅ ⊆ 𝐴
2 df-pss 3996 . . 3 (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴))
31, 2mpbiran 708 . 2 (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴)
4 necom 3000 . 2 (∅ ≠ 𝐴𝐴 ≠ ∅)
53, 4bitri 275 1 (∅ ⊊ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wne 2946  wss 3976  wpss 3977  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-dif 3979  df-ss 3993  df-pss 3996  df-nul 4353
This theorem is referenced by:  php  9273  phpOLD  9285  zornn0g  10574  prn0  11058  genpn0  11072  nqpr  11083  ltexprlem5  11109  reclem2pr  11117  suplem1pr  11121  alexsubALTlem4  24079  bj-2upln0  36989  bj-2upln1upl  36990  0pssin  43733
  Copyright terms: Public domain W3C validator