MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pss Structured version   Visualization version   GIF version

Theorem 0pss 4410
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.)
Assertion
Ref Expression
0pss (∅ ⊊ 𝐴𝐴 ≠ ∅)

Proof of Theorem 0pss
StepHypRef Expression
1 0ss 4363 . . 3 ∅ ⊆ 𝐴
2 df-pss 3934 . . 3 (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴))
31, 2mpbiran 709 . 2 (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴)
4 necom 2978 . 2 (∅ ≠ 𝐴𝐴 ≠ ∅)
53, 4bitri 275 1 (∅ ⊊ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wne 2925  wss 3914  wpss 3915  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-dif 3917  df-ss 3931  df-pss 3934  df-nul 4297
This theorem is referenced by:  php  9171  zornn0g  10458  prn0  10942  genpn0  10956  nqpr  10967  ltexprlem5  10993  reclem2pr  11001  suplem1pr  11005  alexsubALTlem4  23937  bj-2upln0  37011  bj-2upln1upl  37012  0pssin  43760
  Copyright terms: Public domain W3C validator