MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pss Structured version   Visualization version   GIF version

Theorem 0pss 4395
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.)
Assertion
Ref Expression
0pss (∅ ⊊ 𝐴𝐴 ≠ ∅)

Proof of Theorem 0pss
StepHypRef Expression
1 0ss 4348 . . 3 ∅ ⊆ 𝐴
2 df-pss 3920 . . 3 (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴))
31, 2mpbiran 709 . 2 (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴)
4 necom 2979 . 2 (∅ ≠ 𝐴𝐴 ≠ ∅)
53, 4bitri 275 1 (∅ ⊊ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wne 2926  wss 3900  wpss 3901  c0 4281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-dif 3903  df-ss 3917  df-pss 3920  df-nul 4282
This theorem is referenced by:  php  9111  zornn0g  10388  prn0  10872  genpn0  10886  nqpr  10897  ltexprlem5  10923  reclem2pr  10931  suplem1pr  10935  alexsubALTlem4  23958  bj-2upln0  37036  bj-2upln1upl  37037  0pssin  43783
  Copyright terms: Public domain W3C validator