| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pss | Structured version Visualization version GIF version | ||
| Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| 0pss | ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4375 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | df-pss 3946 | . . 3 ⊢ (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴)) | |
| 3 | 1, 2 | mpbiran 709 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴) |
| 4 | necom 2985 | . 2 ⊢ (∅ ≠ 𝐴 ↔ 𝐴 ≠ ∅) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ≠ wne 2932 ⊆ wss 3926 ⊊ wpss 3927 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-dif 3929 df-ss 3943 df-pss 3946 df-nul 4309 |
| This theorem is referenced by: php 9221 phpOLD 9231 zornn0g 10519 prn0 11003 genpn0 11017 nqpr 11028 ltexprlem5 11054 reclem2pr 11062 suplem1pr 11066 alexsubALTlem4 23988 bj-2upln0 37041 bj-2upln1upl 37042 0pssin 43795 |
| Copyright terms: Public domain | W3C validator |