MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pss Structured version   Visualization version   GIF version

Theorem 0pss 4422
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.)
Assertion
Ref Expression
0pss (∅ ⊊ 𝐴𝐴 ≠ ∅)

Proof of Theorem 0pss
StepHypRef Expression
1 0ss 4375 . . 3 ∅ ⊆ 𝐴
2 df-pss 3946 . . 3 (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴))
31, 2mpbiran 709 . 2 (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴)
4 necom 2985 . 2 (∅ ≠ 𝐴𝐴 ≠ ∅)
53, 4bitri 275 1 (∅ ⊊ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wne 2932  wss 3926  wpss 3927  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-dif 3929  df-ss 3943  df-pss 3946  df-nul 4309
This theorem is referenced by:  php  9221  phpOLD  9231  zornn0g  10519  prn0  11003  genpn0  11017  nqpr  11028  ltexprlem5  11054  reclem2pr  11062  suplem1pr  11066  alexsubALTlem4  23988  bj-2upln0  37041  bj-2upln1upl  37042  0pssin  43795
  Copyright terms: Public domain W3C validator