MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pss Structured version   Visualization version   GIF version

Theorem 0pss 4383
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.)
Assertion
Ref Expression
0pss (∅ ⊊ 𝐴𝐴 ≠ ∅)

Proof of Theorem 0pss
StepHypRef Expression
1 0ss 4335 . . 3 ∅ ⊆ 𝐴
2 df-pss 3910 . . 3 (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴))
31, 2mpbiran 705 . 2 (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴)
4 necom 2998 . 2 (∅ ≠ 𝐴𝐴 ≠ ∅)
53, 4bitri 274 1 (∅ ⊊ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wne 2944  wss 3891  wpss 3892  c0 4261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-v 3432  df-dif 3894  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262
This theorem is referenced by:  php  8957  phpOLD  8970  zornn0g  10245  prn0  10729  genpn0  10743  nqpr  10754  ltexprlem5  10780  reclem2pr  10788  suplem1pr  10792  alexsubALTlem4  23182  bj-2upln0  35192  bj-2upln1upl  35193  0pssin  41332
  Copyright terms: Public domain W3C validator