MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pss Structured version   Visualization version   GIF version

Theorem 0pss 4413
Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.)
Assertion
Ref Expression
0pss (∅ ⊊ 𝐴𝐴 ≠ ∅)

Proof of Theorem 0pss
StepHypRef Expression
1 0ss 4366 . . 3 ∅ ⊆ 𝐴
2 df-pss 3937 . . 3 (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴))
31, 2mpbiran 709 . 2 (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴)
4 necom 2979 . 2 (∅ ≠ 𝐴𝐴 ≠ ∅)
53, 4bitri 275 1 (∅ ⊊ 𝐴𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wne 2926  wss 3917  wpss 3918  c0 4299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-dif 3920  df-ss 3934  df-pss 3937  df-nul 4300
This theorem is referenced by:  php  9177  zornn0g  10465  prn0  10949  genpn0  10963  nqpr  10974  ltexprlem5  11000  reclem2pr  11008  suplem1pr  11012  alexsubALTlem4  23944  bj-2upln0  37018  bj-2upln1upl  37019  0pssin  43767
  Copyright terms: Public domain W3C validator