| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pss | Structured version Visualization version GIF version | ||
| Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| 0pss | ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4351 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | df-pss 3919 | . . 3 ⊢ (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴)) | |
| 3 | 1, 2 | mpbiran 709 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴) |
| 4 | necom 2983 | . 2 ⊢ (∅ ≠ 𝐴 ↔ 𝐴 ≠ ∅) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ≠ wne 2930 ⊆ wss 3899 ⊊ wpss 3900 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-dif 3902 df-ss 3916 df-pss 3919 df-nul 4285 |
| This theorem is referenced by: php 9126 zornn0g 10406 prn0 10890 genpn0 10904 nqpr 10915 ltexprlem5 10941 reclem2pr 10949 suplem1pr 10953 alexsubALTlem4 23975 bj-2upln0 37078 bj-2upln1upl 37079 0pssin 43878 |
| Copyright terms: Public domain | W3C validator |