| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0pss | Structured version Visualization version GIF version | ||
| Description: The null set is a proper subset of any nonempty set. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| 0pss | ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4348 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 2 | df-pss 3920 | . . 3 ⊢ (∅ ⊊ 𝐴 ↔ (∅ ⊆ 𝐴 ∧ ∅ ≠ 𝐴)) | |
| 3 | 1, 2 | mpbiran 709 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ ∅ ≠ 𝐴) |
| 4 | necom 2979 | . 2 ⊢ (∅ ≠ 𝐴 ↔ 𝐴 ≠ ∅) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ≠ wne 2926 ⊆ wss 3900 ⊊ wpss 3901 ∅c0 4281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-dif 3903 df-ss 3917 df-pss 3920 df-nul 4282 |
| This theorem is referenced by: php 9111 zornn0g 10388 prn0 10872 genpn0 10886 nqpr 10897 ltexprlem5 10923 reclem2pr 10931 suplem1pr 10935 alexsubALTlem4 23958 bj-2upln0 37036 bj-2upln1upl 37037 0pssin 43783 |
| Copyright terms: Public domain | W3C validator |