MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndisj Structured version   Visualization version   GIF version

Theorem ndisj 4345
Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.)
Assertion
Ref Expression
ndisj ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ndisj
StepHypRef Expression
1 n0 4328 . 2 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 elin 3942 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
32exbii 1848 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
41, 3bitri 275 1 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2108  wne 2932  cin 3925  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-v 3461  df-dif 3929  df-in 3933  df-nul 4309
This theorem is referenced by:  xpcogend  14991  metsscmetcld  25265  0pssin  43742
  Copyright terms: Public domain W3C validator