MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndisj Structured version   Visualization version   GIF version

Theorem ndisj 4320
Description: Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.)
Assertion
Ref Expression
ndisj ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ndisj
StepHypRef Expression
1 n0 4303 . 2 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴𝐵))
2 elin 3918 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
32exbii 1849 . 2 (∃𝑥 𝑥 ∈ (𝐴𝐵) ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
41, 3bitri 275 1 ((𝐴𝐵) ≠ ∅ ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1780  wcel 2111  wne 2928  cin 3901  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3905  df-in 3909  df-nul 4284
This theorem is referenced by:  xpcogend  14881  metsscmetcld  25243  0pssin  43810
  Copyright terms: Public domain W3C validator