Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0qs | Structured version Visualization version GIF version |
Description: Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.) |
Ref | Expression |
---|---|
0qs | ⊢ (∅ / 𝑅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-qs 8462 | . 2 ⊢ (∅ / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} | |
2 | rex0 4288 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅 | |
3 | 2 | abf 4333 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} = ∅ |
4 | 1, 3 | eqtri 2766 | 1 ⊢ (∅ / 𝑅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 ∃wrex 3064 ∅c0 4253 [cec 8454 / cqs 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-dif 3886 df-nul 4254 df-qs 8462 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |