| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0qs | Structured version Visualization version GIF version | ||
| Description: Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.) |
| Ref | Expression |
|---|---|
| 0qs | ⊢ (∅ / 𝑅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-qs 8680 | . 2 ⊢ (∅ / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} | |
| 2 | rex0 4326 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅 | |
| 3 | 2 | abf 4372 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} = ∅ |
| 4 | 1, 3 | eqtri 2753 | 1 ⊢ (∅ / 𝑅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2708 ∃wrex 3054 ∅c0 4299 [cec 8672 / cqs 8673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-dif 3920 df-nul 4300 df-qs 8680 |
| This theorem is referenced by: fracbas 33262 |
| Copyright terms: Public domain | W3C validator |