MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0qs Structured version   Visualization version   GIF version

Theorem 0qs 8825
Description: Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.)
Assertion
Ref Expression
0qs (∅ / 𝑅) = ∅

Proof of Theorem 0qs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 8769 . 2 (∅ / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅}
2 rex0 4383 . . 3 ¬ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅
32abf 4429 . 2 {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} = ∅
41, 3eqtri 2768 1 (∅ / 𝑅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cab 2717  wrex 3076  c0 4352  [cec 8761   / cqs 8762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-dif 3979  df-nul 4353  df-qs 8769
This theorem is referenced by:  fracbas  33272
  Copyright terms: Public domain W3C validator