Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0qs Structured version   Visualization version   GIF version

Theorem 0qs 37733
Description: Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.)
Assertion
Ref Expression
0qs (∅ / 𝑅) = ∅

Proof of Theorem 0qs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 8706 . 2 (∅ / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅}
2 rex0 4350 . . 3 ¬ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅
32abf 4395 . 2 {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} = ∅
41, 3eqtri 2752 1 (∅ / 𝑅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  {cab 2701  wrex 3062  c0 4315  [cec 8698   / cqs 8699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-dif 3944  df-nul 4316  df-qs 8706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator