![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0qs | Structured version Visualization version GIF version |
Description: Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.) |
Ref | Expression |
---|---|
0qs | ⊢ (∅ / 𝑅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-qs 8737 | . 2 ⊢ (∅ / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} | |
2 | rex0 4361 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅 | |
3 | 2 | abf 4406 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} = ∅ |
4 | 1, 3 | eqtri 2756 | 1 ⊢ (∅ / 𝑅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 {cab 2705 ∃wrex 3067 ∅c0 4326 [cec 8729 / cqs 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-dif 3952 df-nul 4327 df-qs 8737 |
This theorem is referenced by: fracbas 33016 |
Copyright terms: Public domain | W3C validator |