MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0qs Structured version   Visualization version   GIF version

Theorem 0qs 8739
Description: Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.)
Assertion
Ref Expression
0qs (∅ / 𝑅) = ∅

Proof of Theorem 0qs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-qs 8680 . 2 (∅ / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅}
2 rex0 4326 . . 3 ¬ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅
32abf 4372 . 2 {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} = ∅
41, 3eqtri 2753 1 (∅ / 𝑅) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2708  wrex 3054  c0 4299  [cec 8672   / cqs 8673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-dif 3920  df-nul 4300  df-qs 8680
This theorem is referenced by:  fracbas  33262
  Copyright terms: Public domain W3C validator