| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0qs | Structured version Visualization version GIF version | ||
| Description: Quotient set with the empty set. (Contributed by Peter Mazsa, 14-Sep-2019.) |
| Ref | Expression |
|---|---|
| 0qs | ⊢ (∅ / 𝑅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-qs 8623 | . 2 ⊢ (∅ / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} | |
| 2 | rex0 4305 | . . 3 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅 | |
| 3 | 2 | abf 4351 | . 2 ⊢ {𝑦 ∣ ∃𝑥 ∈ ∅ 𝑦 = [𝑥]𝑅} = ∅ |
| 4 | 1, 3 | eqtri 2754 | 1 ⊢ (∅ / 𝑅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2709 ∃wrex 3056 ∅c0 4278 [cec 8615 / cqs 8616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-dif 3900 df-nul 4279 df-qs 8623 |
| This theorem is referenced by: fracbas 33263 |
| Copyright terms: Public domain | W3C validator |