MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsg Structured version   Visualization version   GIF version

Theorem elqsg 8515
Description: Closed form of elqs 8516. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg (𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elqsg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . . 3 (𝑦 = 𝐵 → (𝑦 = [𝑥]𝑅𝐵 = [𝑥]𝑅))
21rexbidv 3225 . 2 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
3 df-qs 8462 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
42, 3elab2g 3604 1 (𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wrex 3064  [cec 8454   / cqs 8455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-qs 8462
This theorem is referenced by:  elqs  8516  elqsi  8517  elqsecl  8518  ecelqsg  8519  elpi1  24114  eldmqsres  36348  eldmqs1cossres  36698  prtlem11  36807
  Copyright terms: Public domain W3C validator