MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsg Structured version   Visualization version   GIF version

Theorem elqsg 8740
Description: Closed form of elqs 8741. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg (𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elqsg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2734 . . 3 (𝑦 = 𝐵 → (𝑦 = [𝑥]𝑅𝐵 = [𝑥]𝑅))
21rexbidv 3158 . 2 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
3 df-qs 8680 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
42, 3elab2g 3650 1 (𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3054  [cec 8672   / cqs 8673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-qs 8680
This theorem is referenced by:  elqs  8741  elqsi  8742  elqsecl  8743  ecelqs  8744  quselbas  19123  ghmqusnsglem2  19220  ghmquskerlem2  19224  rngqiprngfulem1  21228  elpi1  24952  eldmqsres  38282  eldmqs1cossres  38658  prtlem11  38866
  Copyright terms: Public domain W3C validator