Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elqsg | Structured version Visualization version GIF version |
Description: Closed form of elqs 8516. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
elqsg | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = [𝑥]𝑅 ↔ 𝐵 = [𝑥]𝑅)) | |
2 | 1 | rexbidv 3225 | . 2 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
3 | df-qs 8462 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
4 | 2, 3 | elab2g 3604 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 [cec 8454 / cqs 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-qs 8462 |
This theorem is referenced by: elqs 8516 elqsi 8517 elqsecl 8518 ecelqsg 8519 elpi1 24114 eldmqsres 36348 eldmqs1cossres 36698 prtlem11 36807 |
Copyright terms: Public domain | W3C validator |