| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqsg | Structured version Visualization version GIF version | ||
| Description: Closed form of elqs 8689. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
| Ref | Expression |
|---|---|
| elqsg | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2735 | . . 3 ⊢ (𝑦 = 𝐵 → (𝑦 = [𝑥]𝑅 ↔ 𝐵 = [𝑥]𝑅)) | |
| 2 | 1 | rexbidv 3156 | . 2 ⊢ (𝑦 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
| 3 | df-qs 8628 | . 2 ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} | |
| 4 | 2, 3 | elab2g 3631 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 [cec 8620 / cqs 8621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-qs 8628 |
| This theorem is referenced by: elqs 8689 elqsi 8690 elqsecl 8691 ecelqs 8692 quselbas 19096 ghmqusnsglem2 19193 ghmquskerlem2 19197 rngqiprngfulem1 21248 elpi1 24972 eldmqsres 38335 eldmqs1cossres 38767 prtlem11 38975 |
| Copyright terms: Public domain | W3C validator |