MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq12 Structured version   Visualization version   GIF version

Theorem qseq12 8785
Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
qseq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))

Proof of Theorem qseq12
StepHypRef Expression
1 qseq1 8780 . 2 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
2 qseq2 8781 . 2 (𝐶 = 𝐷 → (𝐵 / 𝐶) = (𝐵 / 𝐷))
31, 2sylan9eq 2791 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540   / cqs 8723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726  df-qs 8730
This theorem is referenced by:  dmqseq  38663  qseq12d  42257
  Copyright terms: Public domain W3C validator