Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qseq12 | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019.) |
Ref | Expression |
---|---|
qseq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qseq1 8526 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | |
2 | qseq2 8527 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 / 𝐶) = (𝐵 / 𝐷)) | |
3 | 1, 2 | sylan9eq 2799 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 / cqs 8471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ec 8474 df-qs 8478 |
This theorem is referenced by: dmqseq 36732 qseq12d 40194 |
Copyright terms: Public domain | W3C validator |