Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qseq12 | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019.) |
Ref | Expression |
---|---|
qseq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qseq1 8623 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | |
2 | qseq2 8624 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 / 𝐶) = (𝐵 / 𝐷)) | |
3 | 1, 2 | sylan9eq 2796 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 / cqs 8568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-cnv 5628 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ec 8571 df-qs 8575 |
This theorem is referenced by: dmqseq 36915 qseq12d 40474 |
Copyright terms: Public domain | W3C validator |