MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq12 Structured version   Visualization version   GIF version

Theorem qseq12 8627
Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
qseq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))

Proof of Theorem qseq12
StepHypRef Expression
1 qseq1 8623 . 2 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
2 qseq2 8624 . 2 (𝐶 = 𝐷 → (𝐵 / 𝐶) = (𝐵 / 𝐷))
31, 2sylan9eq 2796 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540   / cqs 8568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093  df-opab 5155  df-cnv 5628  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-ec 8571  df-qs 8575
This theorem is referenced by:  dmqseq  36915  qseq12d  40474
  Copyright terms: Public domain W3C validator