MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq12 Structured version   Visualization version   GIF version

Theorem qseq12 8738
Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
qseq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))

Proof of Theorem qseq12
StepHypRef Expression
1 qseq1 8733 . 2 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
2 qseq2 8734 . 2 (𝐶 = 𝐷 → (𝐵 / 𝐶) = (𝐵 / 𝐷))
31, 2sylan9eq 2785 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540   / cqs 8673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680
This theorem is referenced by:  dmqseq  38638  qseq12d  42234
  Copyright terms: Public domain W3C validator