Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qseq12 | Structured version Visualization version GIF version |
Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019.) |
Ref | Expression |
---|---|
qseq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qseq1 8583 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶)) | |
2 | qseq2 8584 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 / 𝐶) = (𝐵 / 𝐷)) | |
3 | 1, 2 | sylan9eq 2796 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 / cqs 8528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-qs 8535 |
This theorem is referenced by: dmqseq 36795 qseq12d 40251 |
Copyright terms: Public domain | W3C validator |