MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq12 Structured version   Visualization version   GIF version

Theorem qseq12 8587
Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
qseq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))

Proof of Theorem qseq12
StepHypRef Expression
1 qseq1 8583 . 2 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
2 qseq2 8584 . 2 (𝐶 = 𝐷 → (𝐵 / 𝐶) = (𝐵 / 𝐷))
31, 2sylan9eq 2796 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539   / cqs 8528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535
This theorem is referenced by:  dmqseq  36795  qseq12d  40251
  Copyright terms: Public domain W3C validator