MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qseq12 Structured version   Visualization version   GIF version

Theorem qseq12 8806
Description: Equality theorem for quotient set. (Contributed by Peter Mazsa, 17-Apr-2019.)
Assertion
Ref Expression
qseq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))

Proof of Theorem qseq12
StepHypRef Expression
1 qseq1 8801 . 2 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
2 qseq2 8802 . 2 (𝐶 = 𝐷 → (𝐵 / 𝐶) = (𝐵 / 𝐷))
31, 2sylan9eq 2797 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 / 𝐶) = (𝐵 / 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540   / cqs 8744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747  df-qs 8751
This theorem is referenced by:  dmqseq  38641  qseq12d  42280
  Copyright terms: Public domain W3C validator