| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abf | Structured version Visualization version GIF version | ||
| Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2115, ax-10 2146, ax-11 2162, ax-12 2182. (Revised by GG, 30-Jun-2024.) |
| Ref | Expression |
|---|---|
| abf.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
| 2 | 1 | bifal 1557 | . . 3 ⊢ (𝜑 ↔ ⊥) |
| 3 | 2 | abbii 2800 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} |
| 4 | dfnul4 4284 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
| 5 | 3, 4 | eqtr4i 2759 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ⊥wfal 1553 {cab 2711 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: csbprc 4358 mpo0 7439 0qs 8695 fi0 9313 join0 18313 meet0 18314 addsrid 27910 muls01 28054 mulsrid 28055 onaddscl 28213 onmulscl 28214 n0scut 28265 1p1e2s 28342 fmla0disjsuc 35465 pmapglb2xN 39894 |
| Copyright terms: Public domain | W3C validator |