![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abf | Structured version Visualization version GIF version |
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2101, ax-10 2130, ax-11 2147, ax-12 2164. (Revised by Gino Giotto, 30-Jun-2024.) |
Ref | Expression |
---|---|
abf.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
2 | 1 | bifal 1550 | . . 3 ⊢ (𝜑 ↔ ⊥) |
3 | 2 | abbii 2797 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} |
4 | dfnul4 4320 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
5 | 3, 4 | eqtr4i 2758 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ⊥wfal 1546 {cab 2704 ∅c0 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-dif 3947 df-nul 4319 |
This theorem is referenced by: csbprc 4402 mpo0 7499 fi0 9435 join0 18388 meet0 18389 addsrid 27868 muls01 27999 mulsrid 28000 n0scut 28190 fmla0disjsuc 34944 0qs 37778 pmapglb2xN 39182 |
Copyright terms: Public domain | W3C validator |