MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4355
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2115, ax-10 2146, ax-11 2162, ax-12 2182. (Revised by GG, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1557 . . 3 (𝜑 ↔ ⊥)
32abbii 2800 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4284 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2759 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wfal 1553  {cab 2711  c0 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-dif 3901  df-nul 4283
This theorem is referenced by:  csbprc  4358  mpo0  7439  0qs  8695  fi0  9313  join0  18313  meet0  18314  addsrid  27910  muls01  28054  mulsrid  28055  onaddscl  28213  onmulscl  28214  n0scut  28265  1p1e2s  28342  fmla0disjsuc  35465  pmapglb2xN  39894
  Copyright terms: Public domain W3C validator