MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4336
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2108, ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1555 . . 3 (𝜑 ↔ ⊥)
32abbii 2808 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4258 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2769 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wfal 1551  {cab 2715  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-dif 3890  df-nul 4257
This theorem is referenced by:  csbprc  4340  mpo0  7360  fi0  9179  join0  18123  meet0  18124  fmla0disjsuc  33360  addsid1  34127  0qs  36500  pmapglb2xN  37786
  Copyright terms: Public domain W3C validator