MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4429
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2110, ax-10 2141, ax-11 2158, ax-12 2178. (Revised by GG, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1553 . . 3 (𝜑 ↔ ⊥)
32abbii 2812 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4354 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2771 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wfal 1549  {cab 2717  c0 4352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-dif 3979  df-nul 4353
This theorem is referenced by:  csbprc  4432  mpo0  7535  0qs  8825  fi0  9489  join0  18475  meet0  18476  addsrid  28015  muls01  28156  mulsrid  28157  onaddscl  28304  onmulscl  28305  n0scut  28356  1p1e2s  28418  fmla0disjsuc  35366  pmapglb2xN  39729
  Copyright terms: Public domain W3C validator