MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4405
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2109, ax-10 2140, ax-11 2156, ax-12 2176. (Revised by GG, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1555 . . 3 (𝜑 ↔ ⊥)
32abbii 2808 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4334 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2767 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wfal 1551  {cab 2713  c0 4332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-dif 3953  df-nul 4333
This theorem is referenced by:  csbprc  4408  mpo0  7519  0qs  8808  fi0  9461  join0  18451  meet0  18452  addsrid  27998  muls01  28139  mulsrid  28140  onaddscl  28287  onmulscl  28288  n0scut  28339  1p1e2s  28401  fmla0disjsuc  35404  pmapglb2xN  39775
  Copyright terms: Public domain W3C validator