MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4398
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2101, ax-10 2130, ax-11 2147, ax-12 2164. (Revised by Gino Giotto, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1550 . . 3 (𝜑 ↔ ⊥)
32abbii 2797 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4320 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2758 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wfal 1546  {cab 2704  c0 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-dif 3947  df-nul 4319
This theorem is referenced by:  csbprc  4402  mpo0  7499  fi0  9435  join0  18388  meet0  18389  addsrid  27868  muls01  27999  mulsrid  28000  n0scut  28190  fmla0disjsuc  34944  0qs  37778  pmapglb2xN  39182
  Copyright terms: Public domain W3C validator