| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abf | Structured version Visualization version GIF version | ||
| Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2111, ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 30-Jun-2024.) |
| Ref | Expression |
|---|---|
| abf.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
| 2 | 1 | bifal 1556 | . . 3 ⊢ (𝜑 ↔ ⊥) |
| 3 | 2 | abbii 2803 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} |
| 4 | dfnul4 4315 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
| 5 | 3, 4 | eqtr4i 2762 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ⊥wfal 1552 {cab 2714 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: csbprc 4389 mpo0 7497 0qs 8786 fi0 9437 join0 18420 meet0 18421 addsrid 27928 muls01 28072 mulsrid 28073 onaddscl 28231 onmulscl 28232 n0scut 28283 1p1e2s 28359 fmla0disjsuc 35425 pmapglb2xN 39796 |
| Copyright terms: Public domain | W3C validator |