MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4369
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2111, ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1556 . . 3 (𝜑 ↔ ⊥)
32abbii 2796 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4298 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2755 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wfal 1552  {cab 2707  c0 4296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-dif 3917  df-nul 4297
This theorem is referenced by:  csbprc  4372  mpo0  7474  0qs  8736  fi0  9371  join0  18364  meet0  18365  addsrid  27871  muls01  28015  mulsrid  28016  onaddscl  28174  onmulscl  28175  n0scut  28226  1p1e2s  28302  fmla0disjsuc  35385  pmapglb2xN  39766
  Copyright terms: Public domain W3C validator