Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abf | Structured version Visualization version GIF version |
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2110, ax-10 2139, ax-11 2156, ax-12 2173. (Revised by Gino Giotto, 30-Jun-2024.) |
Ref | Expression |
---|---|
abf.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
2 | 1 | bifal 1555 | . . 3 ⊢ (𝜑 ↔ ⊥) |
3 | 2 | abbii 2809 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} |
4 | dfnul4 4255 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
5 | 3, 4 | eqtr4i 2769 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ⊥wfal 1551 {cab 2715 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-dif 3886 df-nul 4254 |
This theorem is referenced by: csbprc 4337 mpo0 7338 fi0 9109 join0 18038 meet0 18039 fmla0disjsuc 33260 addsid1 34054 0qs 36427 pmapglb2xN 37713 |
Copyright terms: Public domain | W3C validator |