![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abf | Structured version Visualization version GIF version |
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2108, ax-10 2139, ax-11 2155, ax-12 2175. (Revised by GG, 30-Jun-2024.) |
Ref | Expression |
---|---|
abf.1 | ⊢ ¬ 𝜑 |
Ref | Expression |
---|---|
abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
2 | 1 | bifal 1553 | . . 3 ⊢ (𝜑 ↔ ⊥) |
3 | 2 | abbii 2807 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} |
4 | dfnul4 4341 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
5 | 3, 4 | eqtr4i 2766 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ⊥wfal 1549 {cab 2712 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-dif 3966 df-nul 4340 |
This theorem is referenced by: csbprc 4415 mpo0 7518 0qs 8806 fi0 9458 join0 18463 meet0 18464 addsrid 28012 muls01 28153 mulsrid 28154 onaddscl 28301 onmulscl 28302 n0scut 28353 1p1e2s 28415 fmla0disjsuc 35383 pmapglb2xN 39755 |
Copyright terms: Public domain | W3C validator |