MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4356
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2113, ax-10 2144, ax-11 2160, ax-12 2180. (Revised by GG, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1557 . . 3 (𝜑 ↔ ⊥)
32abbii 2798 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4285 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2757 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wfal 1553  {cab 2709  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-dif 3905  df-nul 4284
This theorem is referenced by:  csbprc  4359  mpo0  7431  0qs  8687  fi0  9304  join0  18309  meet0  18310  addsrid  27908  muls01  28052  mulsrid  28053  onaddscl  28211  onmulscl  28212  n0scut  28263  1p1e2s  28340  fmla0disjsuc  35440  pmapglb2xN  39817
  Copyright terms: Public domain W3C validator