MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4412
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2108, ax-10 2139, ax-11 2155, ax-12 2175. (Revised by GG, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1553 . . 3 (𝜑 ↔ ⊥)
32abbii 2807 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4341 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2766 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wfal 1549  {cab 2712  c0 4339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-dif 3966  df-nul 4340
This theorem is referenced by:  csbprc  4415  mpo0  7518  0qs  8806  fi0  9458  join0  18463  meet0  18464  addsrid  28012  muls01  28153  mulsrid  28154  onaddscl  28301  onmulscl  28302  n0scut  28353  1p1e2s  28415  fmla0disjsuc  35383  pmapglb2xN  39755
  Copyright terms: Public domain W3C validator