MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4386
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2111, ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1556 . . 3 (𝜑 ↔ ⊥)
32abbii 2803 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4315 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2762 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wfal 1552  {cab 2714  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-dif 3934  df-nul 4314
This theorem is referenced by:  csbprc  4389  mpo0  7497  0qs  8786  fi0  9437  join0  18420  meet0  18421  addsrid  27928  muls01  28072  mulsrid  28073  onaddscl  28231  onmulscl  28232  n0scut  28283  1p1e2s  28359  fmla0disjsuc  35425  pmapglb2xN  39796
  Copyright terms: Public domain W3C validator