| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abf | Structured version Visualization version GIF version | ||
| Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2109, ax-10 2140, ax-11 2156, ax-12 2176. (Revised by GG, 30-Jun-2024.) |
| Ref | Expression |
|---|---|
| abf.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| abf | ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abf.1 | . . . 4 ⊢ ¬ 𝜑 | |
| 2 | 1 | bifal 1555 | . . 3 ⊢ (𝜑 ↔ ⊥) |
| 3 | 2 | abbii 2808 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ ⊥} |
| 4 | dfnul4 4334 | . 2 ⊢ ∅ = {𝑥 ∣ ⊥} | |
| 5 | 3, 4 | eqtr4i 2767 | 1 ⊢ {𝑥 ∣ 𝜑} = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ⊥wfal 1551 {cab 2713 ∅c0 4332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-dif 3953 df-nul 4333 |
| This theorem is referenced by: csbprc 4408 mpo0 7519 0qs 8808 fi0 9461 join0 18451 meet0 18452 addsrid 27998 muls01 28139 mulsrid 28140 onaddscl 28287 onmulscl 28288 n0scut 28339 1p1e2s 28401 fmla0disjsuc 35404 pmapglb2xN 39775 |
| Copyright terms: Public domain | W3C validator |