MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abf Structured version   Visualization version   GIF version

Theorem abf 4394
Description: A class abstraction determined by a false formula is empty. (Contributed by NM, 20-Jan-2012.) Avoid ax-8 2100, ax-10 2129, ax-11 2146, ax-12 2163. (Revised by Gino Giotto, 30-Jun-2024.)
Hypothesis
Ref Expression
abf.1 ¬ 𝜑
Assertion
Ref Expression
abf {𝑥𝜑} = ∅

Proof of Theorem abf
StepHypRef Expression
1 abf.1 . . . 4 ¬ 𝜑
21bifal 1549 . . 3 (𝜑 ↔ ⊥)
32abbii 2794 . 2 {𝑥𝜑} = {𝑥 ∣ ⊥}
4 dfnul4 4316 . 2 ∅ = {𝑥 ∣ ⊥}
53, 4eqtr4i 2755 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wfal 1545  {cab 2701  c0 4314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-dif 3943  df-nul 4315
This theorem is referenced by:  csbprc  4398  mpo0  7486  fi0  9411  join0  18360  meet0  18361  addsrid  27797  muls01  27928  mulsrid  27929  n0scut  28119  fmla0disjsuc  34878  0qs  37729  pmapglb2xN  39133
  Copyright terms: Public domain W3C validator