Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0res Structured version   Visualization version   GIF version

Theorem 0res 32116
Description: Restriction of the empty function. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
0res (∅ ↾ 𝐴) = ∅

Proof of Theorem 0res
StepHypRef Expression
1 df-res 5688 . 2 (∅ ↾ 𝐴) = (∅ ∩ (𝐴 × V))
2 0in 4393 . 2 (∅ ∩ (𝐴 × V)) = ∅
31, 2eqtri 2759 1 (∅ ↾ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3473  cin 3947  c0 4322   × cxp 5674  cres 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-in 3955  df-nul 4323  df-res 5688
This theorem is referenced by:  cycpmrn  32587  tocyccntz  32588
  Copyright terms: Public domain W3C validator