Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0res Structured version   Visualization version   GIF version

Theorem 0res 32505
Description: Restriction of the empty function. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
0res (∅ ↾ 𝐴) = ∅

Proof of Theorem 0res
StepHypRef Expression
1 df-res 5643 . 2 (∅ ↾ 𝐴) = (∅ ∩ (𝐴 × V))
2 0in 4356 . 2 (∅ ∩ (𝐴 × V)) = ∅
31, 2eqtri 2752 1 (∅ ↾ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3444  cin 3910  c0 4292   × cxp 5629  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-in 3918  df-nul 4293  df-res 5643
This theorem is referenced by:  cycpmrn  33073  tocyccntz  33074
  Copyright terms: Public domain W3C validator