| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0res | Structured version Visualization version GIF version | ||
| Description: Restriction of the empty function. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| 0res | ⊢ (∅ ↾ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5677 | . 2 ⊢ (∅ ↾ 𝐴) = (∅ ∩ (𝐴 × V)) | |
| 2 | 0in 4377 | . 2 ⊢ (∅ ∩ (𝐴 × V)) = ∅ | |
| 3 | 1, 2 | eqtri 2757 | 1 ⊢ (∅ ↾ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 Vcvv 3463 ∩ cin 3930 ∅c0 4313 × cxp 5663 ↾ cres 5667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-in 3938 df-nul 4314 df-res 5677 |
| This theorem is referenced by: cycpmrn 33102 tocyccntz 33103 |
| Copyright terms: Public domain | W3C validator |