Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0res Structured version   Visualization version   GIF version

Theorem 0res 32627
Description: Restriction of the empty function. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
0res (∅ ↾ 𝐴) = ∅

Proof of Theorem 0res
StepHypRef Expression
1 df-res 5712 . 2 (∅ ↾ 𝐴) = (∅ ∩ (𝐴 × V))
2 0in 4420 . 2 (∅ ∩ (𝐴 × V)) = ∅
31, 2eqtri 2768 1 (∅ ↾ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  Vcvv 3488  cin 3975  c0 4352   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-nul 4353  df-res 5712
This theorem is referenced by:  cycpmrn  33138  tocyccntz  33139
  Copyright terms: Public domain W3C validator