Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0res | Structured version Visualization version GIF version |
Description: Restriction of the empty function. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
0res | ⊢ (∅ ↾ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5592 | . 2 ⊢ (∅ ↾ 𝐴) = (∅ ∩ (𝐴 × V)) | |
2 | 0in 4324 | . 2 ⊢ (∅ ∩ (𝐴 × V)) = ∅ | |
3 | 1, 2 | eqtri 2766 | 1 ⊢ (∅ ↾ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Vcvv 3422 ∩ cin 3882 ∅c0 4253 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-nul 4254 df-res 5592 |
This theorem is referenced by: cycpmrn 31312 tocyccntz 31313 |
Copyright terms: Public domain | W3C validator |