Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0res Structured version   Visualization version   GIF version

Theorem 0res 32638
Description: Restriction of the empty function. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
0res (∅ ↾ 𝐴) = ∅

Proof of Theorem 0res
StepHypRef Expression
1 df-res 5705 . 2 (∅ ↾ 𝐴) = (∅ ∩ (𝐴 × V))
2 0in 4406 . 2 (∅ ∩ (𝐴 × V)) = ∅
31, 2eqtri 2765 1 (∅ ↾ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3481  cin 3965  c0 4342   × cxp 5691  cres 5695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-in 3973  df-nul 4343  df-res 5705
This theorem is referenced by:  cycpmrn  33178  tocyccntz  33179
  Copyright terms: Public domain W3C validator