| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0res | Structured version Visualization version GIF version | ||
| Description: Restriction of the empty function. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| 0res | ⊢ (∅ ↾ 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5652 | . 2 ⊢ (∅ ↾ 𝐴) = (∅ ∩ (𝐴 × V)) | |
| 2 | 0in 4362 | . 2 ⊢ (∅ ∩ (𝐴 × V)) = ∅ | |
| 3 | 1, 2 | eqtri 2753 | 1 ⊢ (∅ ↾ 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Vcvv 3450 ∩ cin 3915 ∅c0 4298 × cxp 5638 ↾ cres 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-in 3923 df-nul 4299 df-res 5652 |
| This theorem is referenced by: cycpmrn 33106 tocyccntz 33107 |
| Copyright terms: Public domain | W3C validator |