Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0res Structured version   Visualization version   GIF version

Theorem 0res 32551
Description: Restriction of the empty function. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Assertion
Ref Expression
0res (∅ ↾ 𝐴) = ∅

Proof of Theorem 0res
StepHypRef Expression
1 df-res 5677 . 2 (∅ ↾ 𝐴) = (∅ ∩ (𝐴 × V))
2 0in 4377 . 2 (∅ ∩ (𝐴 × V)) = ∅
31, 2eqtri 2757 1 (∅ ↾ 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  Vcvv 3463  cin 3930  c0 4313   × cxp 5663  cres 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-in 3938  df-nul 4314  df-res 5677
This theorem is referenced by:  cycpmrn  33102  tocyccntz  33103
  Copyright terms: Public domain W3C validator