![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0res | Structured version Visualization version GIF version |
Description: Restriction of the empty function. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
0res | ⊢ (∅ ↾ 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5712 | . 2 ⊢ (∅ ↾ 𝐴) = (∅ ∩ (𝐴 × V)) | |
2 | 0in 4420 | . 2 ⊢ (∅ ∩ (𝐴 × V)) = ∅ | |
3 | 1, 2 | eqtri 2768 | 1 ⊢ (∅ ↾ 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ∩ cin 3975 ∅c0 4352 × cxp 5698 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-nul 4353 df-res 5712 |
This theorem is referenced by: cycpmrn 33138 tocyccntz 33139 |
Copyright terms: Public domain | W3C validator |