Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relfi Structured version   Visualization version   GIF version

Theorem relfi 32266
Description: A relation (set) is finite if and only if both its domain and range are finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
Assertion
Ref Expression
relfi (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)))

Proof of Theorem relfi
StepHypRef Expression
1 dmfi 9336 . . 3 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
2 rnfi 9341 . . 3 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
31, 2jca 511 . 2 (𝐴 ∈ Fin → (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin))
4 xpfi 9323 . . . 4 ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → (dom 𝐴 × ran 𝐴) ∈ Fin)
5 relssdmrn 6267 . . . 4 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
6 ssfi 9179 . . . 4 (((dom 𝐴 × ran 𝐴) ∈ Fin ∧ 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) → 𝐴 ∈ Fin)
74, 5, 6syl2anr 596 . . 3 ((Rel 𝐴 ∧ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
87ex 412 . 2 (Rel 𝐴 → ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → 𝐴 ∈ Fin))
93, 8impbid2 225 1 (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105  wss 3948   × cxp 5674  dom cdm 5676  ran crn 5677  Rel wrel 5681  Fincfn 8945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7860  df-1st 7979  df-2nd 7980  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-fin 8949
This theorem is referenced by:  fpwrelmapffslem  32390
  Copyright terms: Public domain W3C validator