![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relfi | Structured version Visualization version GIF version |
Description: A relation (set) is finite if and only if both its domain and range are finite. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
Ref | Expression |
---|---|
relfi | ⊢ (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmfi 9356 | . . 3 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | |
2 | rnfi 9361 | . . 3 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | |
3 | 1, 2 | jca 510 | . 2 ⊢ (𝐴 ∈ Fin → (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)) |
4 | xpfi 9343 | . . . 4 ⊢ ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → (dom 𝐴 × ran 𝐴) ∈ Fin) | |
5 | relssdmrn 6274 | . . . 4 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | |
6 | ssfi 9198 | . . . 4 ⊢ (((dom 𝐴 × ran 𝐴) ∈ Fin ∧ 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) → 𝐴 ∈ Fin) | |
7 | 4, 5, 6 | syl2anr 595 | . . 3 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)) → 𝐴 ∈ Fin) |
8 | 7 | ex 411 | . 2 ⊢ (Rel 𝐴 → ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → 𝐴 ∈ Fin)) |
9 | 3, 8 | impbid2 225 | 1 ⊢ (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3944 × cxp 5676 dom cdm 5678 ran crn 5679 Rel wrel 5683 Fincfn 8964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-om 7872 df-1st 7994 df-2nd 7995 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-fin 8968 |
This theorem is referenced by: fpwrelmapffslem 32596 |
Copyright terms: Public domain | W3C validator |