| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relfi | Structured version Visualization version GIF version | ||
| Description: A relation (set) is finite if and only if both its domain and range are finite. (Contributed by Thierry Arnoux, 27-Aug-2017.) |
| Ref | Expression |
|---|---|
| relfi | ⊢ (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmfi 9228 | . . 3 ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | |
| 2 | rnfi 9233 | . . 3 ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝐴 ∈ Fin → (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)) |
| 4 | xpfi 9213 | . . . 4 ⊢ ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → (dom 𝐴 × ran 𝐴) ∈ Fin) | |
| 5 | relssdmrn 6223 | . . . 4 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) | |
| 6 | ssfi 9091 | . . . 4 ⊢ (((dom 𝐴 × ran 𝐴) ∈ Fin ∧ 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) → 𝐴 ∈ Fin) | |
| 7 | 4, 5, 6 | syl2anr 597 | . . 3 ⊢ ((Rel 𝐴 ∧ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)) → 𝐴 ∈ Fin) |
| 8 | 7 | ex 412 | . 2 ⊢ (Rel 𝐴 → ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → 𝐴 ∈ Fin)) |
| 9 | 3, 8 | impbid2 226 | 1 ⊢ (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 × cxp 5619 dom cdm 5621 ran crn 5622 Rel wrel 5626 Fincfn 8877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-om 7805 df-1st 7929 df-2nd 7930 df-1o 8393 df-en 8878 df-dom 8879 df-fin 8881 |
| This theorem is referenced by: fpwrelmapffslem 32721 |
| Copyright terms: Public domain | W3C validator |