Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relfi Structured version   Visualization version   GIF version

Theorem relfi 32583
Description: A relation (set) is finite if and only if both its domain and range are finite. (Contributed by Thierry Arnoux, 27-Aug-2017.)
Assertion
Ref Expression
relfi (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)))

Proof of Theorem relfi
StepHypRef Expression
1 dmfi 9347 . . 3 (𝐴 ∈ Fin → dom 𝐴 ∈ Fin)
2 rnfi 9352 . . 3 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
31, 2jca 511 . 2 (𝐴 ∈ Fin → (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin))
4 xpfi 9330 . . . 4 ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → (dom 𝐴 × ran 𝐴) ∈ Fin)
5 relssdmrn 6257 . . . 4 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
6 ssfi 9187 . . . 4 (((dom 𝐴 × ran 𝐴) ∈ Fin ∧ 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) → 𝐴 ∈ Fin)
74, 5, 6syl2anr 597 . . 3 ((Rel 𝐴 ∧ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
87ex 412 . 2 (Rel 𝐴 → ((dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin) → 𝐴 ∈ Fin))
93, 8impbid2 226 1 (Rel 𝐴 → (𝐴 ∈ Fin ↔ (dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wss 3926   × cxp 5652  dom cdm 5654  ran crn 5655  Rel wrel 5659  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1st 7988  df-2nd 7989  df-1o 8480  df-en 8960  df-dom 8961  df-fin 8963
This theorem is referenced by:  fpwrelmapffslem  32709
  Copyright terms: Public domain W3C validator