Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmrn Structured version   Visualization version   GIF version

Theorem cycpmrn 30785
Description: The range of the word used to build a cycle is the cycle's orbit, i.e. the set of points it moves. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
cycpmrn.1 𝑀 = (toCyc‘𝐷)
cycpmrn.2 (𝜑𝐷𝑉)
cycpmrn.3 (𝜑𝑊 ∈ Word 𝐷)
cycpmrn.4 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmrn.5 (𝜑 → 1 < (♯‘𝑊))
Assertion
Ref Expression
cycpmrn (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))

Proof of Theorem cycpmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycpmrn.4 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
21ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊:dom 𝑊1-1𝐷)
3 simpllr 774 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ dom 𝑊)
4 fzo0ss1 13068 . . . . . . . . . . . . 13 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
5 simpr 487 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ (0..^((♯‘𝑊) − 1)))
6 cycpmrn.3 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ Word 𝐷)
7 lencl 13883 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑊) ∈ ℕ0)
98ad4antr 730 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℕ0)
109nn0zd 12086 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℤ)
11 1zzd 12014 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 1 ∈ ℤ)
12 fzoaddel2 13094 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
135, 10, 11, 12syl3anc 1367 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
144, 13sseldi 3965 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (0..^(♯‘𝑊)))
156ad4antr 730 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐷)
16 wrddm 13869 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
1715, 16syl 17 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → dom 𝑊 = (0..^(♯‘𝑊)))
1814, 17eleqtrrd 2916 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ dom 𝑊)
19 fzossz 13058 . . . . . . . . . . . . . 14 (0..^((♯‘𝑊) − 1)) ⊆ ℤ
2019, 5sseldi 3965 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℤ)
2120zred 12088 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℝ)
2221ltp1d 11570 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 < (𝑥 + 1))
2321, 22ltned 10776 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ≠ (𝑥 + 1))
24 f1veqaeq 7015 . . . . . . . . . . . . . 14 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → ((𝑊𝑥) = (𝑊‘(𝑥 + 1)) → 𝑥 = (𝑥 + 1)))
2524necon3d 3037 . . . . . . . . . . . . 13 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2625anassrs 470 . . . . . . . . . . . 12 (((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2726imp 409 . . . . . . . . . . 11 ((((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) ∧ 𝑥 ≠ (𝑥 + 1)) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
282, 3, 18, 23, 27syl1111anc 837 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
29 cycpmrn.1 . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
30 cycpmrn.2 . . . . . . . . . . . 12 (𝜑𝐷𝑉)
3130ad4antr 730 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝐷𝑉)
3229, 31, 15, 2, 5cycpmfv1 30755 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘(𝑥 + 1)))
3328, 32neeqtrrd 3090 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ ((𝑀𝑊)‘(𝑊𝑥)))
3433necomd 3071 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) ≠ (𝑊𝑥))
35 simplr 767 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑦 = (𝑊𝑥))
3635fveq2d 6674 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
3734, 36, 353netr4d 3093 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
381ad4antr 730 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊:dom 𝑊1-1𝐷)
396ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ∈ Word 𝐷)
40 eldmne0 30373 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝑊𝑊 ≠ ∅)
4140ad2antlr 725 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ≠ ∅)
42 lennncl 13884 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝐷𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
4339, 41, 42syl2anc 586 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ ℕ)
44 lbfzo0 13078 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
4543, 44sylibr 236 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ (0..^(♯‘𝑊)))
4639, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → dom 𝑊 = (0..^(♯‘𝑊)))
4745, 46eleqtrrd 2916 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ dom 𝑊)
4847adantr 483 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ∈ dom 𝑊)
49 simpllr 774 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 ∈ dom 𝑊)
50 0red 10644 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
51 cycpmrn.5 . . . . . . . . . . . . 13 (𝜑 → 1 < (♯‘𝑊))
52 1red 10642 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
538nn0red 11957 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ ℝ)
5452, 53posdifd 11227 . . . . . . . . . . . . 13 (𝜑 → (1 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 1)))
5551, 54mpbid 234 . . . . . . . . . . . 12 (𝜑 → 0 < ((♯‘𝑊) − 1))
5650, 55ltned 10776 . . . . . . . . . . 11 (𝜑 → 0 ≠ ((♯‘𝑊) − 1))
5756ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ ((♯‘𝑊) − 1))
58 simpr 487 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 = ((♯‘𝑊) − 1))
5957, 58neeqtrrd 3090 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ 𝑥)
60 f1veqaeq 7015 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → ((𝑊‘0) = (𝑊𝑥) → 0 = 𝑥))
6160necon3d 3037 . . . . . . . . . . 11 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6261anassrs 470 . . . . . . . . . 10 (((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6362imp 409 . . . . . . . . 9 ((((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 0 ≠ 𝑥) → (𝑊‘0) ≠ (𝑊𝑥))
6438, 48, 49, 59, 63syl1111anc 837 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → (𝑊‘0) ≠ (𝑊𝑥))
65 simplr 767 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑦 = (𝑊𝑥))
6665fveq2d 6674 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
6730ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝐷𝑉)
686ad4antr 730 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊 ∈ Word 𝐷)
6943nngt0d 11687 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 < (♯‘𝑊))
7069adantr 483 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 < (♯‘𝑊))
7129, 67, 68, 38, 70, 58cycpmfv2 30756 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘0))
7266, 71eqtrd 2856 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = (𝑊‘0))
7364, 72, 653netr4d 3093 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
74 simplr 767 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ dom 𝑊)
7574, 46eleqtrd 2915 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ (0..^(♯‘𝑊)))
76 0z 11993 . . . . . . . . . . 11 0 ∈ ℤ
77 0p1e1 11760 . . . . . . . . . . . . . 14 (0 + 1) = 1
7877fveq2i 6673 . . . . . . . . . . . . 13 (ℤ‘(0 + 1)) = (ℤ‘1)
79 nnuz 12282 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
8078, 79eqtr4i 2847 . . . . . . . . . . . 12 (ℤ‘(0 + 1)) = ℕ
8143, 80eleqtrrdi 2924 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ (ℤ‘(0 + 1)))
82 fzosplitsnm1 13113 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (♯‘𝑊) ∈ (ℤ‘(0 + 1))) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8376, 81, 82sylancr 589 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8475, 83eleqtrd 2915 . . . . . . . . 9 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
85 elun 4125 . . . . . . . . 9 (𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
8684, 85sylib 220 . . . . . . . 8 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
87 velsn 4583 . . . . . . . . 9 (𝑥 ∈ {((♯‘𝑊) − 1)} ↔ 𝑥 = ((♯‘𝑊) − 1))
8887orbi2i 909 . . . . . . . 8 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
8986, 88sylib 220 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
9037, 73, 89mpjaodan 955 . . . . . 6 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
91 f1fun 6577 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
92 elrnrexdmb 6856 . . . . . . . 8 (Fun 𝑊 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
931, 91, 923syl 18 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
9493biimpa 479 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥))
9590, 94r19.29a 3289 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
96 eqid 2821 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
9729, 30, 6, 1, 96cycpmcl 30758 . . . . . . . . 9 (𝜑 → (𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)))
98 eqid 2821 . . . . . . . . . . 11 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
9996, 98elsymgbas 18502 . . . . . . . . . 10 (𝐷𝑉 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10030, 99syl 17 . . . . . . . . 9 (𝜑 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10197, 100mpbid 234 . . . . . . . 8 (𝜑 → (𝑀𝑊):𝐷1-1-onto𝐷)
102 f1ofn 6616 . . . . . . . 8 ((𝑀𝑊):𝐷1-1-onto𝐷 → (𝑀𝑊) Fn 𝐷)
103101, 102syl 17 . . . . . . 7 (𝜑 → (𝑀𝑊) Fn 𝐷)
104103adantr 483 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → (𝑀𝑊) Fn 𝐷)
105 wrdf 13867 . . . . . . . 8 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
106 frn 6520 . . . . . . . 8 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
1076, 105, 1063syl 18 . . . . . . 7 (𝜑 → ran 𝑊𝐷)
108107sselda 3967 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦𝐷)
109 fnelnfp 6939 . . . . . 6 (((𝑀𝑊) Fn 𝐷𝑦𝐷) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
110104, 108, 109syl2anc 586 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
11195, 110mpbird 259 . . . 4 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦 ∈ dom ((𝑀𝑊) ∖ I ))
112111ex 415 . . 3 (𝜑 → (𝑦 ∈ ran 𝑊𝑦 ∈ dom ((𝑀𝑊) ∖ I )))
113112ssrdv 3973 . 2 (𝜑 → ran 𝑊 ⊆ dom ((𝑀𝑊) ∖ I ))
11429, 30, 6, 1tocycfv 30751 . . . . 5 (𝜑 → (𝑀𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
115114difeq1d 4098 . . . 4 (𝜑 → ((𝑀𝑊) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
116115dmeqd 5774 . . 3 (𝜑 → dom ((𝑀𝑊) ∖ I ) = dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
117 difundir 4257 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
118 resdifcom 5872 . . . . . . . 8 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊))
119 difid 4330 . . . . . . . . 9 ( I ∖ I ) = ∅
120119reseq1i 5849 . . . . . . . 8 (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊)) = (∅ ↾ (𝐷 ∖ ran 𝑊))
121 0res 30354 . . . . . . . 8 (∅ ↾ (𝐷 ∖ ran 𝑊)) = ∅
122118, 120, 1213eqtri 2848 . . . . . . 7 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = ∅
123122uneq1i 4135 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
124 0un 4346 . . . . . 6 (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
125117, 123, 1243eqtri 2848 . . . . 5 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
126125dmeqi 5773 . . . 4 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
127 difss 4108 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊)
128 dmss 5771 . . . . . 6 ((((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊) → dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊))
129127, 128ax-mp 5 . . . . 5 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊)
130 dmcoss 5842 . . . . . 6 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ dom 𝑊
131 df-rn 5566 . . . . . 6 ran 𝑊 = dom 𝑊
132130, 131sseqtrri 4004 . . . . 5 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ ran 𝑊
133129, 132sstri 3976 . . . 4 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ran 𝑊
134126, 133eqsstri 4001 . . 3 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) ⊆ ran 𝑊
135116, 134eqsstrdi 4021 . 2 (𝜑 → dom ((𝑀𝑊) ∖ I ) ⊆ ran 𝑊)
136113, 135eqssd 3984 1 (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cdif 3933  cun 3934  wss 3936  c0 4291  {csn 4567   class class class wbr 5066   I cid 5459  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  ccom 5559  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cmin 10870  cn 11638  0cn0 11898  cz 11982  cuz 12244  ..^cfzo 13034  chash 13691  Word cword 13862   cyclShift ccsh 14150  Basecbs 16483  SymGrpcsymg 18495  toCycctocyc 30748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-hash 13692  df-word 13863  df-concat 13923  df-substr 14003  df-pfx 14033  df-csh 14151  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-efmnd 18034  df-symg 18496  df-tocyc 30749
This theorem is referenced by:  tocyccntz  30786
  Copyright terms: Public domain W3C validator