Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmrn Structured version   Visualization version   GIF version

Theorem cycpmrn 31312
Description: The range of the word used to build a cycle is the cycle's orbit, i.e., the set of points it moves. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
cycpmrn.1 𝑀 = (toCyc‘𝐷)
cycpmrn.2 (𝜑𝐷𝑉)
cycpmrn.3 (𝜑𝑊 ∈ Word 𝐷)
cycpmrn.4 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmrn.5 (𝜑 → 1 < (♯‘𝑊))
Assertion
Ref Expression
cycpmrn (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))

Proof of Theorem cycpmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycpmrn.4 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
21ad4antr 728 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊:dom 𝑊1-1𝐷)
3 simpllr 772 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ dom 𝑊)
4 fzo0ss1 13345 . . . . . . . . . . . . 13 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
5 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ (0..^((♯‘𝑊) − 1)))
6 cycpmrn.3 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ Word 𝐷)
7 lencl 14164 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑊) ∈ ℕ0)
98ad4antr 728 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℕ0)
109nn0zd 12353 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℤ)
11 1zzd 12281 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 1 ∈ ℤ)
12 fzoaddel2 13371 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
135, 10, 11, 12syl3anc 1369 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
144, 13sselid 3915 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (0..^(♯‘𝑊)))
156ad4antr 728 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐷)
16 wrddm 14152 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
1715, 16syl 17 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → dom 𝑊 = (0..^(♯‘𝑊)))
1814, 17eleqtrrd 2842 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ dom 𝑊)
19 fzossz 13335 . . . . . . . . . . . . . 14 (0..^((♯‘𝑊) − 1)) ⊆ ℤ
2019, 5sselid 3915 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℤ)
2120zred 12355 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℝ)
2221ltp1d 11835 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 < (𝑥 + 1))
2321, 22ltned 11041 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ≠ (𝑥 + 1))
24 f1veqaeq 7111 . . . . . . . . . . . . . 14 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → ((𝑊𝑥) = (𝑊‘(𝑥 + 1)) → 𝑥 = (𝑥 + 1)))
2524necon3d 2963 . . . . . . . . . . . . 13 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2625anassrs 467 . . . . . . . . . . . 12 (((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2726imp 406 . . . . . . . . . . 11 ((((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) ∧ 𝑥 ≠ (𝑥 + 1)) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
282, 3, 18, 23, 27syl1111anc 836 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
29 cycpmrn.1 . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
30 cycpmrn.2 . . . . . . . . . . . 12 (𝜑𝐷𝑉)
3130ad4antr 728 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝐷𝑉)
3229, 31, 15, 2, 5cycpmfv1 31282 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘(𝑥 + 1)))
3328, 32neeqtrrd 3017 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ ((𝑀𝑊)‘(𝑊𝑥)))
3433necomd 2998 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) ≠ (𝑊𝑥))
35 simplr 765 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑦 = (𝑊𝑥))
3635fveq2d 6760 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
3734, 36, 353netr4d 3020 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
381ad4antr 728 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊:dom 𝑊1-1𝐷)
396ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ∈ Word 𝐷)
40 eldmne0 30864 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝑊𝑊 ≠ ∅)
4140ad2antlr 723 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ≠ ∅)
42 lennncl 14165 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝐷𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
4339, 41, 42syl2anc 583 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ ℕ)
44 lbfzo0 13355 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
4543, 44sylibr 233 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ (0..^(♯‘𝑊)))
4639, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → dom 𝑊 = (0..^(♯‘𝑊)))
4745, 46eleqtrrd 2842 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ dom 𝑊)
4847adantr 480 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ∈ dom 𝑊)
49 simpllr 772 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 ∈ dom 𝑊)
50 0red 10909 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
51 cycpmrn.5 . . . . . . . . . . . . 13 (𝜑 → 1 < (♯‘𝑊))
52 1red 10907 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
538nn0red 12224 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ ℝ)
5452, 53posdifd 11492 . . . . . . . . . . . . 13 (𝜑 → (1 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 1)))
5551, 54mpbid 231 . . . . . . . . . . . 12 (𝜑 → 0 < ((♯‘𝑊) − 1))
5650, 55ltned 11041 . . . . . . . . . . 11 (𝜑 → 0 ≠ ((♯‘𝑊) − 1))
5756ad4antr 728 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ ((♯‘𝑊) − 1))
58 simpr 484 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 = ((♯‘𝑊) − 1))
5957, 58neeqtrrd 3017 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ 𝑥)
60 f1veqaeq 7111 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → ((𝑊‘0) = (𝑊𝑥) → 0 = 𝑥))
6160necon3d 2963 . . . . . . . . . . 11 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6261anassrs 467 . . . . . . . . . 10 (((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6362imp 406 . . . . . . . . 9 ((((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 0 ≠ 𝑥) → (𝑊‘0) ≠ (𝑊𝑥))
6438, 48, 49, 59, 63syl1111anc 836 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → (𝑊‘0) ≠ (𝑊𝑥))
65 simplr 765 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑦 = (𝑊𝑥))
6665fveq2d 6760 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
6730ad4antr 728 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝐷𝑉)
686ad4antr 728 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊 ∈ Word 𝐷)
6943nngt0d 11952 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 < (♯‘𝑊))
7069adantr 480 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 < (♯‘𝑊))
7129, 67, 68, 38, 70, 58cycpmfv2 31283 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘0))
7266, 71eqtrd 2778 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = (𝑊‘0))
7364, 72, 653netr4d 3020 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
74 simplr 765 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ dom 𝑊)
7574, 46eleqtrd 2841 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ (0..^(♯‘𝑊)))
76 0z 12260 . . . . . . . . . . 11 0 ∈ ℤ
77 0p1e1 12025 . . . . . . . . . . . . . 14 (0 + 1) = 1
7877fveq2i 6759 . . . . . . . . . . . . 13 (ℤ‘(0 + 1)) = (ℤ‘1)
79 nnuz 12550 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
8078, 79eqtr4i 2769 . . . . . . . . . . . 12 (ℤ‘(0 + 1)) = ℕ
8143, 80eleqtrrdi 2850 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ (ℤ‘(0 + 1)))
82 fzosplitsnm1 13390 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (♯‘𝑊) ∈ (ℤ‘(0 + 1))) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8376, 81, 82sylancr 586 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8475, 83eleqtrd 2841 . . . . . . . . 9 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
85 elun 4079 . . . . . . . . 9 (𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
8684, 85sylib 217 . . . . . . . 8 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
87 velsn 4574 . . . . . . . . 9 (𝑥 ∈ {((♯‘𝑊) − 1)} ↔ 𝑥 = ((♯‘𝑊) − 1))
8887orbi2i 909 . . . . . . . 8 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
8986, 88sylib 217 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
9037, 73, 89mpjaodan 955 . . . . . 6 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
91 f1fun 6656 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
92 elrnrexdmb 6948 . . . . . . . 8 (Fun 𝑊 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
931, 91, 923syl 18 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
9493biimpa 476 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥))
9590, 94r19.29a 3217 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
96 eqid 2738 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
9729, 30, 6, 1, 96cycpmcl 31285 . . . . . . . . 9 (𝜑 → (𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)))
98 eqid 2738 . . . . . . . . . . 11 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
9996, 98elsymgbas 18896 . . . . . . . . . 10 (𝐷𝑉 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10030, 99syl 17 . . . . . . . . 9 (𝜑 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10197, 100mpbid 231 . . . . . . . 8 (𝜑 → (𝑀𝑊):𝐷1-1-onto𝐷)
102 f1ofn 6701 . . . . . . . 8 ((𝑀𝑊):𝐷1-1-onto𝐷 → (𝑀𝑊) Fn 𝐷)
103101, 102syl 17 . . . . . . 7 (𝜑 → (𝑀𝑊) Fn 𝐷)
104103adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → (𝑀𝑊) Fn 𝐷)
105 wrdf 14150 . . . . . . . 8 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
106 frn 6591 . . . . . . . 8 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
1076, 105, 1063syl 18 . . . . . . 7 (𝜑 → ran 𝑊𝐷)
108107sselda 3917 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦𝐷)
109 fnelnfp 7031 . . . . . 6 (((𝑀𝑊) Fn 𝐷𝑦𝐷) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
110104, 108, 109syl2anc 583 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
11195, 110mpbird 256 . . . 4 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦 ∈ dom ((𝑀𝑊) ∖ I ))
112111ex 412 . . 3 (𝜑 → (𝑦 ∈ ran 𝑊𝑦 ∈ dom ((𝑀𝑊) ∖ I )))
113112ssrdv 3923 . 2 (𝜑 → ran 𝑊 ⊆ dom ((𝑀𝑊) ∖ I ))
11429, 30, 6, 1tocycfv 31278 . . . . 5 (𝜑 → (𝑀𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
115114difeq1d 4052 . . . 4 (𝜑 → ((𝑀𝑊) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
116115dmeqd 5803 . . 3 (𝜑 → dom ((𝑀𝑊) ∖ I ) = dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
117 difundir 4211 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
118 resdifcom 5899 . . . . . . . 8 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊))
119 difid 4301 . . . . . . . . 9 ( I ∖ I ) = ∅
120119reseq1i 5876 . . . . . . . 8 (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊)) = (∅ ↾ (𝐷 ∖ ran 𝑊))
121 0res 30844 . . . . . . . 8 (∅ ↾ (𝐷 ∖ ran 𝑊)) = ∅
122118, 120, 1213eqtri 2770 . . . . . . 7 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = ∅
123122uneq1i 4089 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
124 0un 4323 . . . . . 6 (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
125117, 123, 1243eqtri 2770 . . . . 5 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
126125dmeqi 5802 . . . 4 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
127 difss 4062 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊)
128 dmss 5800 . . . . . 6 ((((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊) → dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊))
129127, 128ax-mp 5 . . . . 5 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊)
130 dmcoss 5869 . . . . . 6 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ dom 𝑊
131 df-rn 5591 . . . . . 6 ran 𝑊 = dom 𝑊
132130, 131sseqtrri 3954 . . . . 5 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ ran 𝑊
133129, 132sstri 3926 . . . 4 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ran 𝑊
134126, 133eqsstri 3951 . . 3 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) ⊆ ran 𝑊
135116, 134eqsstrdi 3971 . 2 (𝜑 → dom ((𝑀𝑊) ∖ I ) ⊆ ran 𝑊)
136113, 135eqssd 3934 1 (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558   class class class wbr 5070   I cid 5479  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cmin 11135  cn 11903  0cn0 12163  cz 12249  cuz 12511  ..^cfzo 13311  chash 13972  Word cword 14145   cyclShift ccsh 14429  Basecbs 16840  SymGrpcsymg 18889  toCycctocyc 31275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312  df-csh 14430  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-efmnd 18423  df-symg 18890  df-tocyc 31276
This theorem is referenced by:  tocyccntz  31313
  Copyright terms: Public domain W3C validator