Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmrn Structured version   Visualization version   GIF version

Theorem cycpmrn 33163
Description: The range of the word used to build a cycle is the cycle's orbit, i.e., the set of points it moves. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
cycpmrn.1 𝑀 = (toCyc‘𝐷)
cycpmrn.2 (𝜑𝐷𝑉)
cycpmrn.3 (𝜑𝑊 ∈ Word 𝐷)
cycpmrn.4 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmrn.5 (𝜑 → 1 < (♯‘𝑊))
Assertion
Ref Expression
cycpmrn (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))

Proof of Theorem cycpmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycpmrn.4 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
21ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊:dom 𝑊1-1𝐷)
3 simpllr 776 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ dom 𝑊)
4 fzo0ss1 13729 . . . . . . . . . . . . 13 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
5 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ (0..^((♯‘𝑊) − 1)))
6 cycpmrn.3 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ Word 𝐷)
7 lencl 14571 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑊) ∈ ℕ0)
98ad4antr 732 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℕ0)
109nn0zd 12639 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℤ)
11 1zzd 12648 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 1 ∈ ℤ)
12 fzoaddel2 13759 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
135, 10, 11, 12syl3anc 1373 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
144, 13sselid 3981 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (0..^(♯‘𝑊)))
156ad4antr 732 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐷)
16 wrddm 14559 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
1715, 16syl 17 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → dom 𝑊 = (0..^(♯‘𝑊)))
1814, 17eleqtrrd 2844 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ dom 𝑊)
19 fzossz 13719 . . . . . . . . . . . . . 14 (0..^((♯‘𝑊) − 1)) ⊆ ℤ
2019, 5sselid 3981 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℤ)
2120zred 12722 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℝ)
2221ltp1d 12198 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 < (𝑥 + 1))
2321, 22ltned 11397 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ≠ (𝑥 + 1))
24 f1veqaeq 7277 . . . . . . . . . . . . . 14 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → ((𝑊𝑥) = (𝑊‘(𝑥 + 1)) → 𝑥 = (𝑥 + 1)))
2524necon3d 2961 . . . . . . . . . . . . 13 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2625anassrs 467 . . . . . . . . . . . 12 (((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2726imp 406 . . . . . . . . . . 11 ((((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) ∧ 𝑥 ≠ (𝑥 + 1)) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
282, 3, 18, 23, 27syl1111anc 841 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
29 cycpmrn.1 . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
30 cycpmrn.2 . . . . . . . . . . . 12 (𝜑𝐷𝑉)
3130ad4antr 732 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝐷𝑉)
3229, 31, 15, 2, 5cycpmfv1 33133 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘(𝑥 + 1)))
3328, 32neeqtrrd 3015 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ ((𝑀𝑊)‘(𝑊𝑥)))
3433necomd 2996 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) ≠ (𝑊𝑥))
35 simplr 769 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑦 = (𝑊𝑥))
3635fveq2d 6910 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
3734, 36, 353netr4d 3018 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
381ad4antr 732 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊:dom 𝑊1-1𝐷)
396ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ∈ Word 𝐷)
40 eldmne0 32638 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝑊𝑊 ≠ ∅)
4140ad2antlr 727 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ≠ ∅)
42 lennncl 14572 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝐷𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
4339, 41, 42syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ ℕ)
44 lbfzo0 13739 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
4543, 44sylibr 234 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ (0..^(♯‘𝑊)))
4639, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → dom 𝑊 = (0..^(♯‘𝑊)))
4745, 46eleqtrrd 2844 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ dom 𝑊)
4847adantr 480 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ∈ dom 𝑊)
49 simpllr 776 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 ∈ dom 𝑊)
50 0red 11264 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
51 cycpmrn.5 . . . . . . . . . . . . 13 (𝜑 → 1 < (♯‘𝑊))
52 1red 11262 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
538nn0red 12588 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ ℝ)
5452, 53posdifd 11850 . . . . . . . . . . . . 13 (𝜑 → (1 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 1)))
5551, 54mpbid 232 . . . . . . . . . . . 12 (𝜑 → 0 < ((♯‘𝑊) − 1))
5650, 55ltned 11397 . . . . . . . . . . 11 (𝜑 → 0 ≠ ((♯‘𝑊) − 1))
5756ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ ((♯‘𝑊) − 1))
58 simpr 484 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 = ((♯‘𝑊) − 1))
5957, 58neeqtrrd 3015 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ 𝑥)
60 f1veqaeq 7277 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → ((𝑊‘0) = (𝑊𝑥) → 0 = 𝑥))
6160necon3d 2961 . . . . . . . . . . 11 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6261anassrs 467 . . . . . . . . . 10 (((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6362imp 406 . . . . . . . . 9 ((((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 0 ≠ 𝑥) → (𝑊‘0) ≠ (𝑊𝑥))
6438, 48, 49, 59, 63syl1111anc 841 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → (𝑊‘0) ≠ (𝑊𝑥))
65 simplr 769 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑦 = (𝑊𝑥))
6665fveq2d 6910 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
6730ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝐷𝑉)
686ad4antr 732 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊 ∈ Word 𝐷)
6943nngt0d 12315 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 < (♯‘𝑊))
7069adantr 480 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 < (♯‘𝑊))
7129, 67, 68, 38, 70, 58cycpmfv2 33134 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘0))
7266, 71eqtrd 2777 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = (𝑊‘0))
7364, 72, 653netr4d 3018 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
74 simplr 769 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ dom 𝑊)
7574, 46eleqtrd 2843 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ (0..^(♯‘𝑊)))
76 0z 12624 . . . . . . . . . . 11 0 ∈ ℤ
77 0p1e1 12388 . . . . . . . . . . . . . 14 (0 + 1) = 1
7877fveq2i 6909 . . . . . . . . . . . . 13 (ℤ‘(0 + 1)) = (ℤ‘1)
79 nnuz 12921 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
8078, 79eqtr4i 2768 . . . . . . . . . . . 12 (ℤ‘(0 + 1)) = ℕ
8143, 80eleqtrrdi 2852 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ (ℤ‘(0 + 1)))
82 fzosplitsnm1 13779 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (♯‘𝑊) ∈ (ℤ‘(0 + 1))) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8376, 81, 82sylancr 587 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8475, 83eleqtrd 2843 . . . . . . . . 9 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
85 elun 4153 . . . . . . . . 9 (𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
8684, 85sylib 218 . . . . . . . 8 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
87 velsn 4642 . . . . . . . . 9 (𝑥 ∈ {((♯‘𝑊) − 1)} ↔ 𝑥 = ((♯‘𝑊) − 1))
8887orbi2i 913 . . . . . . . 8 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
8986, 88sylib 218 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
9037, 73, 89mpjaodan 961 . . . . . 6 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
91 f1fun 6806 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
92 elrnrexdmb 7110 . . . . . . . 8 (Fun 𝑊 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
931, 91, 923syl 18 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
9493biimpa 476 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥))
9590, 94r19.29a 3162 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
96 eqid 2737 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
9729, 30, 6, 1, 96cycpmcl 33136 . . . . . . . . 9 (𝜑 → (𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)))
98 eqid 2737 . . . . . . . . . . 11 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
9996, 98elsymgbas 19391 . . . . . . . . . 10 (𝐷𝑉 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10030, 99syl 17 . . . . . . . . 9 (𝜑 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10197, 100mpbid 232 . . . . . . . 8 (𝜑 → (𝑀𝑊):𝐷1-1-onto𝐷)
102 f1ofn 6849 . . . . . . . 8 ((𝑀𝑊):𝐷1-1-onto𝐷 → (𝑀𝑊) Fn 𝐷)
103101, 102syl 17 . . . . . . 7 (𝜑 → (𝑀𝑊) Fn 𝐷)
104103adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → (𝑀𝑊) Fn 𝐷)
105 wrdf 14557 . . . . . . . 8 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
106 frn 6743 . . . . . . . 8 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
1076, 105, 1063syl 18 . . . . . . 7 (𝜑 → ran 𝑊𝐷)
108107sselda 3983 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦𝐷)
109 fnelnfp 7197 . . . . . 6 (((𝑀𝑊) Fn 𝐷𝑦𝐷) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
110104, 108, 109syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
11195, 110mpbird 257 . . . 4 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦 ∈ dom ((𝑀𝑊) ∖ I ))
112111ex 412 . . 3 (𝜑 → (𝑦 ∈ ran 𝑊𝑦 ∈ dom ((𝑀𝑊) ∖ I )))
113112ssrdv 3989 . 2 (𝜑 → ran 𝑊 ⊆ dom ((𝑀𝑊) ∖ I ))
11429, 30, 6, 1tocycfv 33129 . . . . 5 (𝜑 → (𝑀𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
115114difeq1d 4125 . . . 4 (𝜑 → ((𝑀𝑊) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
116115dmeqd 5916 . . 3 (𝜑 → dom ((𝑀𝑊) ∖ I ) = dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
117 difundir 4291 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
118 resdifcom 6016 . . . . . . . 8 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊))
119 difid 4376 . . . . . . . . 9 ( I ∖ I ) = ∅
120119reseq1i 5993 . . . . . . . 8 (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊)) = (∅ ↾ (𝐷 ∖ ran 𝑊))
121 0res 32616 . . . . . . . 8 (∅ ↾ (𝐷 ∖ ran 𝑊)) = ∅
122118, 120, 1213eqtri 2769 . . . . . . 7 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = ∅
123122uneq1i 4164 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
124 0un 4396 . . . . . 6 (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
125117, 123, 1243eqtri 2769 . . . . 5 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
126125dmeqi 5915 . . . 4 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
127 difss 4136 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊)
128 dmss 5913 . . . . . 6 ((((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊) → dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊))
129127, 128ax-mp 5 . . . . 5 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊)
130 dmcoss 5985 . . . . . 6 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ dom 𝑊
131 df-rn 5696 . . . . . 6 ran 𝑊 = dom 𝑊
132130, 131sseqtrri 4033 . . . . 5 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ ran 𝑊
133129, 132sstri 3993 . . . 4 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ran 𝑊
134126, 133eqsstri 4030 . . 3 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) ⊆ ran 𝑊
135116, 134eqsstrdi 4028 . 2 (𝜑 → dom ((𝑀𝑊) ∖ I ) ⊆ ran 𝑊)
136113, 135eqssd 4001 1 (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cdif 3948  cun 3949  wss 3951  c0 4333  {csn 4626   class class class wbr 5143   I cid 5577  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  ccom 5689  Fun wfun 6555   Fn wfn 6556  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492  cn 12266  0cn0 12526  cz 12613  cuz 12878  ..^cfzo 13694  chash 14369  Word cword 14552   cyclShift ccsh 14826  Basecbs 17247  SymGrpcsymg 19386  toCycctocyc 33126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-hash 14370  df-word 14553  df-concat 14609  df-substr 14679  df-pfx 14709  df-csh 14827  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-tset 17316  df-efmnd 18882  df-symg 19387  df-tocyc 33127
This theorem is referenced by:  tocyccntz  33164
  Copyright terms: Public domain W3C validator