Step | Hyp | Ref
| Expression |
1 | | cycpmrn.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
2 | 1 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊:dom 𝑊–1-1→𝐷) |
3 | | simpllr 776 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ dom 𝑊) |
4 | | fzo0ss1 13272 |
. . . . . . . . . . . . 13
⊢
(1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊)) |
5 | | simpr 488 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈
(0..^((♯‘𝑊)
− 1))) |
6 | | cycpmrn.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
7 | | lencl 14088 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈
ℕ0) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (♯‘𝑊) ∈
ℕ0) |
9 | 8 | ad4antr 732 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) →
(♯‘𝑊) ∈
ℕ0) |
10 | 9 | nn0zd 12280 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) →
(♯‘𝑊) ∈
ℤ) |
11 | | 1zzd 12208 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 1 ∈
ℤ) |
12 | | fzoaddel2 13298 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈
(0..^((♯‘𝑊)
− 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ)
→ (𝑥 + 1) ∈
(1..^(♯‘𝑊))) |
13 | 5, 10, 11, 12 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈
(1..^(♯‘𝑊))) |
14 | 4, 13 | sseldi 3899 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈
(0..^(♯‘𝑊))) |
15 | 6 | ad4antr 732 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐷) |
16 | | wrddm 14076 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊))) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → dom 𝑊 = (0..^(♯‘𝑊))) |
18 | 14, 17 | eleqtrrd 2841 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ dom 𝑊) |
19 | | fzossz 13262 |
. . . . . . . . . . . . . 14
⊢
(0..^((♯‘𝑊) − 1)) ⊆
ℤ |
20 | 19, 5 | sseldi 3899 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈
ℤ) |
21 | 20 | zred 12282 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈
ℝ) |
22 | 21 | ltp1d 11762 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 < (𝑥 + 1)) |
23 | 21, 22 | ltned 10968 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ≠ (𝑥 + 1)) |
24 | | f1veqaeq 7069 |
. . . . . . . . . . . . . 14
⊢ ((𝑊:dom 𝑊–1-1→𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → ((𝑊‘𝑥) = (𝑊‘(𝑥 + 1)) → 𝑥 = (𝑥 + 1))) |
25 | 24 | necon3d 2961 |
. . . . . . . . . . . . 13
⊢ ((𝑊:dom 𝑊–1-1→𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → (𝑥 ≠ (𝑥 + 1) → (𝑊‘𝑥) ≠ (𝑊‘(𝑥 + 1)))) |
26 | 25 | anassrs 471 |
. . . . . . . . . . . 12
⊢ (((𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) → (𝑥 ≠ (𝑥 + 1) → (𝑊‘𝑥) ≠ (𝑊‘(𝑥 + 1)))) |
27 | 26 | imp 410 |
. . . . . . . . . . 11
⊢ ((((𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) ∧ 𝑥 ≠ (𝑥 + 1)) → (𝑊‘𝑥) ≠ (𝑊‘(𝑥 + 1))) |
28 | 2, 3, 18, 23, 27 | syl1111anc 840 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊‘𝑥) ≠ (𝑊‘(𝑥 + 1))) |
29 | | cycpmrn.1 |
. . . . . . . . . . 11
⊢ 𝑀 = (toCyc‘𝐷) |
30 | | cycpmrn.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
31 | 30 | ad4antr 732 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝐷 ∈ 𝑉) |
32 | 29, 31, 15, 2, 5 | cycpmfv1 31099 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀‘𝑊)‘(𝑊‘𝑥)) = (𝑊‘(𝑥 + 1))) |
33 | 28, 32 | neeqtrrd 3015 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊‘𝑥) ≠ ((𝑀‘𝑊)‘(𝑊‘𝑥))) |
34 | 33 | necomd 2996 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀‘𝑊)‘(𝑊‘𝑥)) ≠ (𝑊‘𝑥)) |
35 | | simplr 769 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑦 = (𝑊‘𝑥)) |
36 | 35 | fveq2d 6721 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀‘𝑊)‘𝑦) = ((𝑀‘𝑊)‘(𝑊‘𝑥))) |
37 | 34, 36, 35 | 3netr4d 3018 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀‘𝑊)‘𝑦) ≠ 𝑦) |
38 | 1 | ad4antr 732 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊:dom 𝑊–1-1→𝐷) |
39 | 6 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → 𝑊 ∈ Word 𝐷) |
40 | | eldmne0 30682 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ dom 𝑊 → 𝑊 ≠ ∅) |
41 | 40 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → 𝑊 ≠ ∅) |
42 | | lennncl 14089 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈
ℕ) |
43 | 39, 41, 42 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → (♯‘𝑊) ∈ ℕ) |
44 | | lbfzo0 13282 |
. . . . . . . . . . . 12
⊢ (0 ∈
(0..^(♯‘𝑊))
↔ (♯‘𝑊)
∈ ℕ) |
45 | 43, 44 | sylibr 237 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → 0 ∈ (0..^(♯‘𝑊))) |
46 | 39, 16 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → dom 𝑊 = (0..^(♯‘𝑊))) |
47 | 45, 46 | eleqtrrd 2841 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → 0 ∈ dom 𝑊) |
48 | 47 | adantr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ∈ dom 𝑊) |
49 | | simpllr 776 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 ∈ dom 𝑊) |
50 | | 0red 10836 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
ℝ) |
51 | | cycpmrn.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 <
(♯‘𝑊)) |
52 | | 1red 10834 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈
ℝ) |
53 | 8 | nn0red 12151 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝑊) ∈
ℝ) |
54 | 52, 53 | posdifd 11419 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 <
(♯‘𝑊) ↔ 0
< ((♯‘𝑊)
− 1))) |
55 | 51, 54 | mpbid 235 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 <
((♯‘𝑊) −
1)) |
56 | 50, 55 | ltned 10968 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 ≠
((♯‘𝑊) −
1)) |
57 | 56 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠
((♯‘𝑊) −
1)) |
58 | | simpr 488 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 = ((♯‘𝑊) − 1)) |
59 | 57, 58 | neeqtrrd 3015 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ 𝑥) |
60 | | f1veqaeq 7069 |
. . . . . . . . . . . 12
⊢ ((𝑊:dom 𝑊–1-1→𝐷 ∧ (0 ∈ dom 𝑊 ∧ 𝑥 ∈ dom 𝑊)) → ((𝑊‘0) = (𝑊‘𝑥) → 0 = 𝑥)) |
61 | 60 | necon3d 2961 |
. . . . . . . . . . 11
⊢ ((𝑊:dom 𝑊–1-1→𝐷 ∧ (0 ∈ dom 𝑊 ∧ 𝑥 ∈ dom 𝑊)) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊‘𝑥))) |
62 | 61 | anassrs 471 |
. . . . . . . . . 10
⊢ (((𝑊:dom 𝑊–1-1→𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊‘𝑥))) |
63 | 62 | imp 410 |
. . . . . . . . 9
⊢ ((((𝑊:dom 𝑊–1-1→𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 0 ≠ 𝑥) → (𝑊‘0) ≠ (𝑊‘𝑥)) |
64 | 38, 48, 49, 59, 63 | syl1111anc 840 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → (𝑊‘0) ≠ (𝑊‘𝑥)) |
65 | | simplr 769 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑦 = (𝑊‘𝑥)) |
66 | 65 | fveq2d 6721 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀‘𝑊)‘𝑦) = ((𝑀‘𝑊)‘(𝑊‘𝑥))) |
67 | 30 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝐷 ∈ 𝑉) |
68 | 6 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊 ∈ Word 𝐷) |
69 | 43 | nngt0d 11879 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → 0 < (♯‘𝑊)) |
70 | 69 | adantr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 <
(♯‘𝑊)) |
71 | 29, 67, 68, 38, 70, 58 | cycpmfv2 31100 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀‘𝑊)‘(𝑊‘𝑥)) = (𝑊‘0)) |
72 | 66, 71 | eqtrd 2777 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀‘𝑊)‘𝑦) = (𝑊‘0)) |
73 | 64, 72, 65 | 3netr4d 3018 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀‘𝑊)‘𝑦) ≠ 𝑦) |
74 | | simplr 769 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → 𝑥 ∈ dom 𝑊) |
75 | 74, 46 | eleqtrd 2840 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → 𝑥 ∈ (0..^(♯‘𝑊))) |
76 | | 0z 12187 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
77 | | 0p1e1 11952 |
. . . . . . . . . . . . . 14
⊢ (0 + 1) =
1 |
78 | 77 | fveq2i 6720 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘(0 + 1)) =
(ℤ≥‘1) |
79 | | nnuz 12477 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
80 | 78, 79 | eqtr4i 2768 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘(0 + 1)) = ℕ |
81 | 43, 80 | eleqtrrdi 2849 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → (♯‘𝑊) ∈ (ℤ≥‘(0 +
1))) |
82 | | fzosplitsnm1 13317 |
. . . . . . . . . . 11
⊢ ((0
∈ ℤ ∧ (♯‘𝑊) ∈ (ℤ≥‘(0 +
1))) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)})) |
83 | 76, 81, 82 | sylancr 590 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪
{((♯‘𝑊) −
1)})) |
84 | 75, 83 | eleqtrd 2840 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → 𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪
{((♯‘𝑊) −
1)})) |
85 | | elun 4063 |
. . . . . . . . 9
⊢ (𝑥 ∈
((0..^((♯‘𝑊)
− 1)) ∪ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)})) |
86 | 84, 85 | sylib 221 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)})) |
87 | | velsn 4557 |
. . . . . . . . 9
⊢ (𝑥 ∈ {((♯‘𝑊) − 1)} ↔ 𝑥 = ((♯‘𝑊) − 1)) |
88 | 87 | orbi2i 913 |
. . . . . . . 8
⊢ ((𝑥 ∈
(0..^((♯‘𝑊)
− 1)) ∨ 𝑥 ∈
{((♯‘𝑊) −
1)}) ↔ (𝑥 ∈
(0..^((♯‘𝑊)
− 1)) ∨ 𝑥 =
((♯‘𝑊) −
1))) |
89 | 86, 88 | sylib 221 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1))) |
90 | 37, 73, 89 | mpjaodan 959 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊‘𝑥)) → ((𝑀‘𝑊)‘𝑦) ≠ 𝑦) |
91 | | f1fun 6617 |
. . . . . . . 8
⊢ (𝑊:dom 𝑊–1-1→𝐷 → Fun 𝑊) |
92 | | elrnrexdmb 6909 |
. . . . . . . 8
⊢ (Fun
𝑊 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊‘𝑥))) |
93 | 1, 91, 92 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊‘𝑥))) |
94 | 93 | biimpa 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑊) → ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊‘𝑥)) |
95 | 90, 94 | r19.29a 3208 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑊) → ((𝑀‘𝑊)‘𝑦) ≠ 𝑦) |
96 | | eqid 2737 |
. . . . . . . . . 10
⊢
(SymGrp‘𝐷) =
(SymGrp‘𝐷) |
97 | 29, 30, 6, 1, 96 | cycpmcl 31102 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘𝑊) ∈ (Base‘(SymGrp‘𝐷))) |
98 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷)) |
99 | 96, 98 | elsymgbas 18766 |
. . . . . . . . . 10
⊢ (𝐷 ∈ 𝑉 → ((𝑀‘𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀‘𝑊):𝐷–1-1-onto→𝐷)) |
100 | 30, 99 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀‘𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀‘𝑊):𝐷–1-1-onto→𝐷)) |
101 | 97, 100 | mpbid 235 |
. . . . . . . 8
⊢ (𝜑 → (𝑀‘𝑊):𝐷–1-1-onto→𝐷) |
102 | | f1ofn 6662 |
. . . . . . . 8
⊢ ((𝑀‘𝑊):𝐷–1-1-onto→𝐷 → (𝑀‘𝑊) Fn 𝐷) |
103 | 101, 102 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝑊) Fn 𝐷) |
104 | 103 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑊) → (𝑀‘𝑊) Fn 𝐷) |
105 | | wrdf 14074 |
. . . . . . . 8
⊢ (𝑊 ∈ Word 𝐷 → 𝑊:(0..^(♯‘𝑊))⟶𝐷) |
106 | | frn 6552 |
. . . . . . . 8
⊢ (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊 ⊆ 𝐷) |
107 | 6, 105, 106 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ran 𝑊 ⊆ 𝐷) |
108 | 107 | sselda 3901 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑊) → 𝑦 ∈ 𝐷) |
109 | | fnelnfp 6992 |
. . . . . 6
⊢ (((𝑀‘𝑊) Fn 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑦 ∈ dom ((𝑀‘𝑊) ∖ I ) ↔ ((𝑀‘𝑊)‘𝑦) ≠ 𝑦)) |
110 | 104, 108,
109 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑊) → (𝑦 ∈ dom ((𝑀‘𝑊) ∖ I ) ↔ ((𝑀‘𝑊)‘𝑦) ≠ 𝑦)) |
111 | 95, 110 | mpbird 260 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝑊) → 𝑦 ∈ dom ((𝑀‘𝑊) ∖ I )) |
112 | 111 | ex 416 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ran 𝑊 → 𝑦 ∈ dom ((𝑀‘𝑊) ∖ I ))) |
113 | 112 | ssrdv 3907 |
. 2
⊢ (𝜑 → ran 𝑊 ⊆ dom ((𝑀‘𝑊) ∖ I )) |
114 | 29, 30, 6, 1 | tocycfv 31095 |
. . . . 5
⊢ (𝜑 → (𝑀‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
115 | 114 | difeq1d 4036 |
. . . 4
⊢ (𝜑 → ((𝑀‘𝑊) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∖ I )) |
116 | 115 | dmeqd 5774 |
. . 3
⊢ (𝜑 → dom ((𝑀‘𝑊) ∖ I ) = dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∖ I )) |
117 | | difundir 4195 |
. . . . . 6
⊢ ((( I
↾ (𝐷 ∖ ran
𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ ◡𝑊) ∖ I )) |
118 | | resdifcom 5870 |
. . . . . . . 8
⊢ (( I
↾ (𝐷 ∖ ran
𝑊)) ∖ I ) = (( I
∖ I ) ↾ (𝐷
∖ ran 𝑊)) |
119 | | difid 4285 |
. . . . . . . . 9
⊢ ( I
∖ I ) = ∅ |
120 | 119 | reseq1i 5847 |
. . . . . . . 8
⊢ (( I
∖ I ) ↾ (𝐷
∖ ran 𝑊)) = (∅
↾ (𝐷 ∖ ran
𝑊)) |
121 | | 0res 30662 |
. . . . . . . 8
⊢ (∅
↾ (𝐷 ∖ ran
𝑊)) =
∅ |
122 | 118, 120,
121 | 3eqtri 2769 |
. . . . . . 7
⊢ (( I
↾ (𝐷 ∖ ran
𝑊)) ∖ I ) =
∅ |
123 | 122 | uneq1i 4073 |
. . . . . 6
⊢ ((( I
↾ (𝐷 ∖ ran
𝑊)) ∖ I ) ∪
(((𝑊 cyclShift 1) ∘
◡𝑊) ∖ I )) = (∅ ∪ (((𝑊 cyclShift 1) ∘ ◡𝑊) ∖ I )) |
124 | | 0un 4307 |
. . . . . 6
⊢ (∅
∪ (((𝑊 cyclShift 1)
∘ ◡𝑊) ∖ I )) = (((𝑊 cyclShift 1) ∘ ◡𝑊) ∖ I ) |
125 | 117, 123,
124 | 3eqtri 2769 |
. . . . 5
⊢ ((( I
↾ (𝐷 ∖ ran
𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∖ I ) = (((𝑊 cyclShift 1) ∘ ◡𝑊) ∖ I ) |
126 | 125 | dmeqi 5773 |
. . . 4
⊢ dom ((( I
↾ (𝐷 ∖ ran
𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∖ I ) = dom (((𝑊 cyclShift 1) ∘ ◡𝑊) ∖ I ) |
127 | | difss 4046 |
. . . . . 6
⊢ (((𝑊 cyclShift 1) ∘ ◡𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ ◡𝑊) |
128 | | dmss 5771 |
. . . . . 6
⊢ ((((𝑊 cyclShift 1) ∘ ◡𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ ◡𝑊) → dom (((𝑊 cyclShift 1) ∘ ◡𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ ◡𝑊)) |
129 | 127, 128 | ax-mp 5 |
. . . . 5
⊢ dom
(((𝑊 cyclShift 1) ∘
◡𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ ◡𝑊) |
130 | | dmcoss 5840 |
. . . . . 6
⊢ dom
((𝑊 cyclShift 1) ∘
◡𝑊) ⊆ dom ◡𝑊 |
131 | | df-rn 5562 |
. . . . . 6
⊢ ran 𝑊 = dom ◡𝑊 |
132 | 130, 131 | sseqtrri 3938 |
. . . . 5
⊢ dom
((𝑊 cyclShift 1) ∘
◡𝑊) ⊆ ran 𝑊 |
133 | 129, 132 | sstri 3910 |
. . . 4
⊢ dom
(((𝑊 cyclShift 1) ∘
◡𝑊) ∖ I ) ⊆ ran 𝑊 |
134 | 126, 133 | eqsstri 3935 |
. . 3
⊢ dom ((( I
↾ (𝐷 ∖ ran
𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∖ I ) ⊆ ran 𝑊 |
135 | 116, 134 | eqsstrdi 3955 |
. 2
⊢ (𝜑 → dom ((𝑀‘𝑊) ∖ I ) ⊆ ran 𝑊) |
136 | 113, 135 | eqssd 3918 |
1
⊢ (𝜑 → ran 𝑊 = dom ((𝑀‘𝑊) ∖ I )) |