Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmrn Structured version   Visualization version   GIF version

Theorem cycpmrn 30842
 Description: The range of the word used to build a cycle is the cycle's orbit, i.e. the set of points it moves. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
cycpmrn.1 𝑀 = (toCyc‘𝐷)
cycpmrn.2 (𝜑𝐷𝑉)
cycpmrn.3 (𝜑𝑊 ∈ Word 𝐷)
cycpmrn.4 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmrn.5 (𝜑 → 1 < (♯‘𝑊))
Assertion
Ref Expression
cycpmrn (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))

Proof of Theorem cycpmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycpmrn.4 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
21ad4antr 731 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊:dom 𝑊1-1𝐷)
3 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ dom 𝑊)
4 fzo0ss1 13064 . . . . . . . . . . . . 13 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
5 simpr 488 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ (0..^((♯‘𝑊) − 1)))
6 cycpmrn.3 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ Word 𝐷)
7 lencl 13878 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑊) ∈ ℕ0)
98ad4antr 731 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℕ0)
109nn0zd 12075 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℤ)
11 1zzd 12003 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 1 ∈ ℤ)
12 fzoaddel2 13090 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
135, 10, 11, 12syl3anc 1368 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
144, 13sseldi 3913 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (0..^(♯‘𝑊)))
156ad4antr 731 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐷)
16 wrddm 13866 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
1715, 16syl 17 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → dom 𝑊 = (0..^(♯‘𝑊)))
1814, 17eleqtrrd 2893 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ dom 𝑊)
19 fzossz 13054 . . . . . . . . . . . . . 14 (0..^((♯‘𝑊) − 1)) ⊆ ℤ
2019, 5sseldi 3913 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℤ)
2120zred 12077 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℝ)
2221ltp1d 11561 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 < (𝑥 + 1))
2321, 22ltned 10767 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ≠ (𝑥 + 1))
24 f1veqaeq 6993 . . . . . . . . . . . . . 14 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → ((𝑊𝑥) = (𝑊‘(𝑥 + 1)) → 𝑥 = (𝑥 + 1)))
2524necon3d 3008 . . . . . . . . . . . . 13 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2625anassrs 471 . . . . . . . . . . . 12 (((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2726imp 410 . . . . . . . . . . 11 ((((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) ∧ 𝑥 ≠ (𝑥 + 1)) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
282, 3, 18, 23, 27syl1111anc 838 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
29 cycpmrn.1 . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
30 cycpmrn.2 . . . . . . . . . . . 12 (𝜑𝐷𝑉)
3130ad4antr 731 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝐷𝑉)
3229, 31, 15, 2, 5cycpmfv1 30812 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘(𝑥 + 1)))
3328, 32neeqtrrd 3061 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ ((𝑀𝑊)‘(𝑊𝑥)))
3433necomd 3042 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) ≠ (𝑊𝑥))
35 simplr 768 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑦 = (𝑊𝑥))
3635fveq2d 6649 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
3734, 36, 353netr4d 3064 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
381ad4antr 731 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊:dom 𝑊1-1𝐷)
396ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ∈ Word 𝐷)
40 eldmne0 30394 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝑊𝑊 ≠ ∅)
4140ad2antlr 726 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ≠ ∅)
42 lennncl 13879 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝐷𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
4339, 41, 42syl2anc 587 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ ℕ)
44 lbfzo0 13074 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
4543, 44sylibr 237 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ (0..^(♯‘𝑊)))
4639, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → dom 𝑊 = (0..^(♯‘𝑊)))
4745, 46eleqtrrd 2893 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ dom 𝑊)
4847adantr 484 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ∈ dom 𝑊)
49 simpllr 775 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 ∈ dom 𝑊)
50 0red 10635 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
51 cycpmrn.5 . . . . . . . . . . . . 13 (𝜑 → 1 < (♯‘𝑊))
52 1red 10633 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
538nn0red 11946 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ ℝ)
5452, 53posdifd 11218 . . . . . . . . . . . . 13 (𝜑 → (1 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 1)))
5551, 54mpbid 235 . . . . . . . . . . . 12 (𝜑 → 0 < ((♯‘𝑊) − 1))
5650, 55ltned 10767 . . . . . . . . . . 11 (𝜑 → 0 ≠ ((♯‘𝑊) − 1))
5756ad4antr 731 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ ((♯‘𝑊) − 1))
58 simpr 488 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 = ((♯‘𝑊) − 1))
5957, 58neeqtrrd 3061 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ 𝑥)
60 f1veqaeq 6993 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → ((𝑊‘0) = (𝑊𝑥) → 0 = 𝑥))
6160necon3d 3008 . . . . . . . . . . 11 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6261anassrs 471 . . . . . . . . . 10 (((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6362imp 410 . . . . . . . . 9 ((((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 0 ≠ 𝑥) → (𝑊‘0) ≠ (𝑊𝑥))
6438, 48, 49, 59, 63syl1111anc 838 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → (𝑊‘0) ≠ (𝑊𝑥))
65 simplr 768 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑦 = (𝑊𝑥))
6665fveq2d 6649 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
6730ad4antr 731 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝐷𝑉)
686ad4antr 731 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊 ∈ Word 𝐷)
6943nngt0d 11676 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 < (♯‘𝑊))
7069adantr 484 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 < (♯‘𝑊))
7129, 67, 68, 38, 70, 58cycpmfv2 30813 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘0))
7266, 71eqtrd 2833 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = (𝑊‘0))
7364, 72, 653netr4d 3064 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
74 simplr 768 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ dom 𝑊)
7574, 46eleqtrd 2892 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ (0..^(♯‘𝑊)))
76 0z 11982 . . . . . . . . . . 11 0 ∈ ℤ
77 0p1e1 11749 . . . . . . . . . . . . . 14 (0 + 1) = 1
7877fveq2i 6648 . . . . . . . . . . . . 13 (ℤ‘(0 + 1)) = (ℤ‘1)
79 nnuz 12271 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
8078, 79eqtr4i 2824 . . . . . . . . . . . 12 (ℤ‘(0 + 1)) = ℕ
8143, 80eleqtrrdi 2901 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ (ℤ‘(0 + 1)))
82 fzosplitsnm1 13109 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (♯‘𝑊) ∈ (ℤ‘(0 + 1))) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8376, 81, 82sylancr 590 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8475, 83eleqtrd 2892 . . . . . . . . 9 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
85 elun 4076 . . . . . . . . 9 (𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
8684, 85sylib 221 . . . . . . . 8 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
87 velsn 4541 . . . . . . . . 9 (𝑥 ∈ {((♯‘𝑊) − 1)} ↔ 𝑥 = ((♯‘𝑊) − 1))
8887orbi2i 910 . . . . . . . 8 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
8986, 88sylib 221 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
9037, 73, 89mpjaodan 956 . . . . . 6 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
91 f1fun 6551 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
92 elrnrexdmb 6833 . . . . . . . 8 (Fun 𝑊 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
931, 91, 923syl 18 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
9493biimpa 480 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥))
9590, 94r19.29a 3248 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
96 eqid 2798 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
9729, 30, 6, 1, 96cycpmcl 30815 . . . . . . . . 9 (𝜑 → (𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)))
98 eqid 2798 . . . . . . . . . . 11 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
9996, 98elsymgbas 18497 . . . . . . . . . 10 (𝐷𝑉 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10030, 99syl 17 . . . . . . . . 9 (𝜑 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10197, 100mpbid 235 . . . . . . . 8 (𝜑 → (𝑀𝑊):𝐷1-1-onto𝐷)
102 f1ofn 6591 . . . . . . . 8 ((𝑀𝑊):𝐷1-1-onto𝐷 → (𝑀𝑊) Fn 𝐷)
103101, 102syl 17 . . . . . . 7 (𝜑 → (𝑀𝑊) Fn 𝐷)
104103adantr 484 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → (𝑀𝑊) Fn 𝐷)
105 wrdf 13864 . . . . . . . 8 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
106 frn 6493 . . . . . . . 8 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
1076, 105, 1063syl 18 . . . . . . 7 (𝜑 → ran 𝑊𝐷)
108107sselda 3915 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦𝐷)
109 fnelnfp 6916 . . . . . 6 (((𝑀𝑊) Fn 𝐷𝑦𝐷) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
110104, 108, 109syl2anc 587 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
11195, 110mpbird 260 . . . 4 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦 ∈ dom ((𝑀𝑊) ∖ I ))
112111ex 416 . . 3 (𝜑 → (𝑦 ∈ ran 𝑊𝑦 ∈ dom ((𝑀𝑊) ∖ I )))
113112ssrdv 3921 . 2 (𝜑 → ran 𝑊 ⊆ dom ((𝑀𝑊) ∖ I ))
11429, 30, 6, 1tocycfv 30808 . . . . 5 (𝜑 → (𝑀𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
115114difeq1d 4049 . . . 4 (𝜑 → ((𝑀𝑊) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
116115dmeqd 5738 . . 3 (𝜑 → dom ((𝑀𝑊) ∖ I ) = dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
117 difundir 4207 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
118 resdifcom 5837 . . . . . . . 8 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊))
119 difid 4284 . . . . . . . . 9 ( I ∖ I ) = ∅
120119reseq1i 5814 . . . . . . . 8 (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊)) = (∅ ↾ (𝐷 ∖ ran 𝑊))
121 0res 30374 . . . . . . . 8 (∅ ↾ (𝐷 ∖ ran 𝑊)) = ∅
122118, 120, 1213eqtri 2825 . . . . . . 7 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = ∅
123122uneq1i 4086 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
124 0un 4300 . . . . . 6 (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
125117, 123, 1243eqtri 2825 . . . . 5 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
126125dmeqi 5737 . . . 4 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
127 difss 4059 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊)
128 dmss 5735 . . . . . 6 ((((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊) → dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊))
129127, 128ax-mp 5 . . . . 5 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊)
130 dmcoss 5807 . . . . . 6 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ dom 𝑊
131 df-rn 5530 . . . . . 6 ran 𝑊 = dom 𝑊
132130, 131sseqtrri 3952 . . . . 5 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ ran 𝑊
133129, 132sstri 3924 . . . 4 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ran 𝑊
134126, 133eqsstri 3949 . . 3 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) ⊆ ran 𝑊
135116, 134eqsstrdi 3969 . 2 (𝜑 → dom ((𝑀𝑊) ∖ I ) ⊆ ran 𝑊)
136113, 135eqssd 3932 1 (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107   ∖ cdif 3878   ∪ cun 3879   ⊆ wss 3881  ∅c0 4243  {csn 4525   class class class wbr 5030   I cid 5424  ◡ccnv 5518  dom cdm 5519  ran crn 5520   ↾ cres 5521   ∘ ccom 5523  Fun wfun 6318   Fn wfn 6319  ⟶wf 6320  –1-1→wf1 6321  –1-1-onto→wf1o 6323  ‘cfv 6324  (class class class)co 7135  0cc0 10528  1c1 10529   + caddc 10531   < clt 10666   − cmin 10861  ℕcn 11627  ℕ0cn0 11887  ℤcz 11971  ℤ≥cuz 12233  ..^cfzo 13030  ♯chash 13688  Word cword 13859   cyclShift ccsh 14143  Basecbs 16477  SymGrpcsymg 18490  toCycctocyc 30805 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-sup 8892  df-inf 8893  df-card 9354  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-5 11693  df-6 11694  df-7 11695  df-8 11696  df-9 11697  df-n0 11888  df-z 11972  df-uz 12234  df-rp 12380  df-fz 12888  df-fzo 13031  df-fl 13159  df-mod 13235  df-hash 13689  df-word 13860  df-concat 13916  df-substr 13996  df-pfx 14026  df-csh 14144  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-tset 16578  df-efmnd 18028  df-symg 18491  df-tocyc 30806 This theorem is referenced by:  tocyccntz  30843
 Copyright terms: Public domain W3C validator