Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmrn Structured version   Visualization version   GIF version

Theorem cycpmrn 31410
Description: The range of the word used to build a cycle is the cycle's orbit, i.e., the set of points it moves. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
cycpmrn.1 𝑀 = (toCyc‘𝐷)
cycpmrn.2 (𝜑𝐷𝑉)
cycpmrn.3 (𝜑𝑊 ∈ Word 𝐷)
cycpmrn.4 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmrn.5 (𝜑 → 1 < (♯‘𝑊))
Assertion
Ref Expression
cycpmrn (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))

Proof of Theorem cycpmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycpmrn.4 . . . . . . . . . . . 12 (𝜑𝑊:dom 𝑊1-1𝐷)
21ad4antr 729 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊:dom 𝑊1-1𝐷)
3 simpllr 773 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ dom 𝑊)
4 fzo0ss1 13417 . . . . . . . . . . . . 13 (1..^(♯‘𝑊)) ⊆ (0..^(♯‘𝑊))
5 simpr 485 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ (0..^((♯‘𝑊) − 1)))
6 cycpmrn.3 . . . . . . . . . . . . . . . . 17 (𝜑𝑊 ∈ Word 𝐷)
7 lencl 14236 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word 𝐷 → (♯‘𝑊) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (♯‘𝑊) ∈ ℕ0)
98ad4antr 729 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℕ0)
109nn0zd 12424 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (♯‘𝑊) ∈ ℤ)
11 1zzd 12351 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 1 ∈ ℤ)
12 fzoaddel2 13443 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∧ (♯‘𝑊) ∈ ℤ ∧ 1 ∈ ℤ) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
135, 10, 11, 12syl3anc 1370 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (1..^(♯‘𝑊)))
144, 13sselid 3919 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ (0..^(♯‘𝑊)))
156ad4antr 729 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑊 ∈ Word 𝐷)
16 wrddm 14224 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐷 → dom 𝑊 = (0..^(♯‘𝑊)))
1715, 16syl 17 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → dom 𝑊 = (0..^(♯‘𝑊)))
1814, 17eleqtrrd 2842 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑥 + 1) ∈ dom 𝑊)
19 fzossz 13407 . . . . . . . . . . . . . 14 (0..^((♯‘𝑊) − 1)) ⊆ ℤ
2019, 5sselid 3919 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℤ)
2120zred 12426 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ∈ ℝ)
2221ltp1d 11905 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 < (𝑥 + 1))
2321, 22ltned 11111 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑥 ≠ (𝑥 + 1))
24 f1veqaeq 7130 . . . . . . . . . . . . . 14 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → ((𝑊𝑥) = (𝑊‘(𝑥 + 1)) → 𝑥 = (𝑥 + 1)))
2524necon3d 2964 . . . . . . . . . . . . 13 ((𝑊:dom 𝑊1-1𝐷 ∧ (𝑥 ∈ dom 𝑊 ∧ (𝑥 + 1) ∈ dom 𝑊)) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2625anassrs 468 . . . . . . . . . . . 12 (((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) → (𝑥 ≠ (𝑥 + 1) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1))))
2726imp 407 . . . . . . . . . . 11 ((((𝑊:dom 𝑊1-1𝐷𝑥 ∈ dom 𝑊) ∧ (𝑥 + 1) ∈ dom 𝑊) ∧ 𝑥 ≠ (𝑥 + 1)) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
282, 3, 18, 23, 27syl1111anc 837 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ (𝑊‘(𝑥 + 1)))
29 cycpmrn.1 . . . . . . . . . . 11 𝑀 = (toCyc‘𝐷)
30 cycpmrn.2 . . . . . . . . . . . 12 (𝜑𝐷𝑉)
3130ad4antr 729 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝐷𝑉)
3229, 31, 15, 2, 5cycpmfv1 31380 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘(𝑥 + 1)))
3328, 32neeqtrrd 3018 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → (𝑊𝑥) ≠ ((𝑀𝑊)‘(𝑊𝑥)))
3433necomd 2999 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘(𝑊𝑥)) ≠ (𝑊𝑥))
35 simplr 766 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → 𝑦 = (𝑊𝑥))
3635fveq2d 6778 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
3734, 36, 353netr4d 3021 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
381ad4antr 729 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊:dom 𝑊1-1𝐷)
396ad3antrrr 727 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ∈ Word 𝐷)
40 eldmne0 30963 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝑊𝑊 ≠ ∅)
4140ad2antlr 724 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑊 ≠ ∅)
42 lennncl 14237 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝐷𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
4339, 41, 42syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ ℕ)
44 lbfzo0 13427 . . . . . . . . . . . 12 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
4543, 44sylibr 233 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ (0..^(♯‘𝑊)))
4639, 16syl 17 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → dom 𝑊 = (0..^(♯‘𝑊)))
4745, 46eleqtrrd 2842 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 ∈ dom 𝑊)
4847adantr 481 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ∈ dom 𝑊)
49 simpllr 773 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 ∈ dom 𝑊)
50 0red 10978 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
51 cycpmrn.5 . . . . . . . . . . . . 13 (𝜑 → 1 < (♯‘𝑊))
52 1red 10976 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
538nn0red 12294 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝑊) ∈ ℝ)
5452, 53posdifd 11562 . . . . . . . . . . . . 13 (𝜑 → (1 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 1)))
5551, 54mpbid 231 . . . . . . . . . . . 12 (𝜑 → 0 < ((♯‘𝑊) − 1))
5650, 55ltned 11111 . . . . . . . . . . 11 (𝜑 → 0 ≠ ((♯‘𝑊) − 1))
5756ad4antr 729 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ ((♯‘𝑊) − 1))
58 simpr 485 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑥 = ((♯‘𝑊) − 1))
5957, 58neeqtrrd 3018 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 ≠ 𝑥)
60 f1veqaeq 7130 . . . . . . . . . . . 12 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → ((𝑊‘0) = (𝑊𝑥) → 0 = 𝑥))
6160necon3d 2964 . . . . . . . . . . 11 ((𝑊:dom 𝑊1-1𝐷 ∧ (0 ∈ dom 𝑊𝑥 ∈ dom 𝑊)) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6261anassrs 468 . . . . . . . . . 10 (((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) → (0 ≠ 𝑥 → (𝑊‘0) ≠ (𝑊𝑥)))
6362imp 407 . . . . . . . . 9 ((((𝑊:dom 𝑊1-1𝐷 ∧ 0 ∈ dom 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 0 ≠ 𝑥) → (𝑊‘0) ≠ (𝑊𝑥))
6438, 48, 49, 59, 63syl1111anc 837 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → (𝑊‘0) ≠ (𝑊𝑥))
65 simplr 766 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑦 = (𝑊𝑥))
6665fveq2d 6778 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = ((𝑀𝑊)‘(𝑊𝑥)))
6730ad4antr 729 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝐷𝑉)
686ad4antr 729 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 𝑊 ∈ Word 𝐷)
6943nngt0d 12022 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 0 < (♯‘𝑊))
7069adantr 481 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → 0 < (♯‘𝑊))
7129, 67, 68, 38, 70, 58cycpmfv2 31381 . . . . . . . . 9 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘(𝑊𝑥)) = (𝑊‘0))
7266, 71eqtrd 2778 . . . . . . . 8 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) = (𝑊‘0))
7364, 72, 653netr4d 3021 . . . . . . 7 (((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) ∧ 𝑥 = ((♯‘𝑊) − 1)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
74 simplr 766 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ dom 𝑊)
7574, 46eleqtrd 2841 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ (0..^(♯‘𝑊)))
76 0z 12330 . . . . . . . . . . 11 0 ∈ ℤ
77 0p1e1 12095 . . . . . . . . . . . . . 14 (0 + 1) = 1
7877fveq2i 6777 . . . . . . . . . . . . 13 (ℤ‘(0 + 1)) = (ℤ‘1)
79 nnuz 12621 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
8078, 79eqtr4i 2769 . . . . . . . . . . . 12 (ℤ‘(0 + 1)) = ℕ
8143, 80eleqtrrdi 2850 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (♯‘𝑊) ∈ (ℤ‘(0 + 1)))
82 fzosplitsnm1 13462 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ (♯‘𝑊) ∈ (ℤ‘(0 + 1))) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8376, 81, 82sylancr 587 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (0..^(♯‘𝑊)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
8475, 83eleqtrd 2841 . . . . . . . . 9 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → 𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
85 elun 4083 . . . . . . . . 9 (𝑥 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
8684, 85sylib 217 . . . . . . . 8 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}))
87 velsn 4577 . . . . . . . . 9 (𝑥 ∈ {((♯‘𝑊) − 1)} ↔ 𝑥 = ((♯‘𝑊) − 1))
8887orbi2i 910 . . . . . . . 8 ((𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 ∈ {((♯‘𝑊) − 1)}) ↔ (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
8986, 88sylib 217 . . . . . . 7 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → (𝑥 ∈ (0..^((♯‘𝑊) − 1)) ∨ 𝑥 = ((♯‘𝑊) − 1)))
9037, 73, 89mpjaodan 956 . . . . . 6 ((((𝜑𝑦 ∈ ran 𝑊) ∧ 𝑥 ∈ dom 𝑊) ∧ 𝑦 = (𝑊𝑥)) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
91 f1fun 6672 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
92 elrnrexdmb 6966 . . . . . . . 8 (Fun 𝑊 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
931, 91, 923syl 18 . . . . . . 7 (𝜑 → (𝑦 ∈ ran 𝑊 ↔ ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥)))
9493biimpa 477 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → ∃𝑥 ∈ dom 𝑊 𝑦 = (𝑊𝑥))
9590, 94r19.29a 3218 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → ((𝑀𝑊)‘𝑦) ≠ 𝑦)
96 eqid 2738 . . . . . . . . . 10 (SymGrp‘𝐷) = (SymGrp‘𝐷)
9729, 30, 6, 1, 96cycpmcl 31383 . . . . . . . . 9 (𝜑 → (𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)))
98 eqid 2738 . . . . . . . . . . 11 (Base‘(SymGrp‘𝐷)) = (Base‘(SymGrp‘𝐷))
9996, 98elsymgbas 18981 . . . . . . . . . 10 (𝐷𝑉 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10030, 99syl 17 . . . . . . . . 9 (𝜑 → ((𝑀𝑊) ∈ (Base‘(SymGrp‘𝐷)) ↔ (𝑀𝑊):𝐷1-1-onto𝐷))
10197, 100mpbid 231 . . . . . . . 8 (𝜑 → (𝑀𝑊):𝐷1-1-onto𝐷)
102 f1ofn 6717 . . . . . . . 8 ((𝑀𝑊):𝐷1-1-onto𝐷 → (𝑀𝑊) Fn 𝐷)
103101, 102syl 17 . . . . . . 7 (𝜑 → (𝑀𝑊) Fn 𝐷)
104103adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → (𝑀𝑊) Fn 𝐷)
105 wrdf 14222 . . . . . . . 8 (𝑊 ∈ Word 𝐷𝑊:(0..^(♯‘𝑊))⟶𝐷)
106 frn 6607 . . . . . . . 8 (𝑊:(0..^(♯‘𝑊))⟶𝐷 → ran 𝑊𝐷)
1076, 105, 1063syl 18 . . . . . . 7 (𝜑 → ran 𝑊𝐷)
108107sselda 3921 . . . . . 6 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦𝐷)
109 fnelnfp 7049 . . . . . 6 (((𝑀𝑊) Fn 𝐷𝑦𝐷) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
110104, 108, 109syl2anc 584 . . . . 5 ((𝜑𝑦 ∈ ran 𝑊) → (𝑦 ∈ dom ((𝑀𝑊) ∖ I ) ↔ ((𝑀𝑊)‘𝑦) ≠ 𝑦))
11195, 110mpbird 256 . . . 4 ((𝜑𝑦 ∈ ran 𝑊) → 𝑦 ∈ dom ((𝑀𝑊) ∖ I ))
112111ex 413 . . 3 (𝜑 → (𝑦 ∈ ran 𝑊𝑦 ∈ dom ((𝑀𝑊) ∖ I )))
113112ssrdv 3927 . 2 (𝜑 → ran 𝑊 ⊆ dom ((𝑀𝑊) ∖ I ))
11429, 30, 6, 1tocycfv 31376 . . . . 5 (𝜑 → (𝑀𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
115114difeq1d 4056 . . . 4 (𝜑 → ((𝑀𝑊) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
116115dmeqd 5814 . . 3 (𝜑 → dom ((𝑀𝑊) ∖ I ) = dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ))
117 difundir 4214 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
118 resdifcom 5910 . . . . . . . 8 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊))
119 difid 4304 . . . . . . . . 9 ( I ∖ I ) = ∅
120119reseq1i 5887 . . . . . . . 8 (( I ∖ I ) ↾ (𝐷 ∖ ran 𝑊)) = (∅ ↾ (𝐷 ∖ ran 𝑊))
121 0res 30943 . . . . . . . 8 (∅ ↾ (𝐷 ∖ ran 𝑊)) = ∅
122118, 120, 1213eqtri 2770 . . . . . . 7 (( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) = ∅
123122uneq1i 4093 . . . . . 6 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∖ I ) ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ))
124 0un 4326 . . . . . 6 (∅ ∪ (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
125117, 123, 1243eqtri 2770 . . . . 5 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
126125dmeqi 5813 . . . 4 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) = dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I )
127 difss 4066 . . . . . 6 (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊)
128 dmss 5811 . . . . . 6 ((((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ((𝑊 cyclShift 1) ∘ 𝑊) → dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊))
129127, 128ax-mp 5 . . . . 5 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ dom ((𝑊 cyclShift 1) ∘ 𝑊)
130 dmcoss 5880 . . . . . 6 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ dom 𝑊
131 df-rn 5600 . . . . . 6 ran 𝑊 = dom 𝑊
132130, 131sseqtrri 3958 . . . . 5 dom ((𝑊 cyclShift 1) ∘ 𝑊) ⊆ ran 𝑊
133129, 132sstri 3930 . . . 4 dom (((𝑊 cyclShift 1) ∘ 𝑊) ∖ I ) ⊆ ran 𝑊
134126, 133eqsstri 3955 . . 3 dom ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∖ I ) ⊆ ran 𝑊
135116, 134eqsstrdi 3975 . 2 (𝜑 → dom ((𝑀𝑊) ∖ I ) ⊆ ran 𝑊)
136113, 135eqssd 3938 1 (𝜑 → ran 𝑊 = dom ((𝑀𝑊) ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  cun 3885  wss 3887  c0 4256  {csn 4561   class class class wbr 5074   I cid 5488  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  Fun wfun 6427   Fn wfn 6428  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  ..^cfzo 13382  chash 14044  Word cword 14217   cyclShift ccsh 14501  Basecbs 16912  SymGrpcsymg 18974  toCycctocyc 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-efmnd 18508  df-symg 18975  df-tocyc 31374
This theorem is referenced by:  tocyccntz  31411
  Copyright terms: Public domain W3C validator