| Step | Hyp | Ref
| Expression |
| 1 | | tocyccntz.s |
. 2
⊢ 𝑆 = (SymGrp‘𝐷) |
| 2 | | eqid 2736 |
. 2
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 3 | | tocyccntz.z |
. 2
⊢ 𝑍 = (Cntz‘𝑆) |
| 4 | | tocyccntz.1 |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 5 | | tocyccntz.m |
. . . 4
⊢ 𝑀 = (toCyc‘𝐷) |
| 6 | 5, 1, 2 | tocycf 33133 |
. . 3
⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}⟶(Base‘𝑆)) |
| 7 | | fimass 6731 |
. . 3
⊢ (𝑀:{𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}⟶(Base‘𝑆) → (𝑀 “ 𝐴) ⊆ (Base‘𝑆)) |
| 8 | 4, 6, 7 | 3syl 18 |
. 2
⊢ (𝜑 → (𝑀 “ 𝐴) ⊆ (Base‘𝑆)) |
| 9 | | difss 4116 |
. . . . . . 7
⊢ (𝐴 ∖ (◡♯ “ {0, 1})) ⊆ 𝐴 |
| 10 | | tocyccntz.2 |
. . . . . . 7
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ran 𝑥) |
| 11 | | disjss1 5097 |
. . . . . . 7
⊢ ((𝐴 ∖ (◡♯ “ {0, 1})) ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 ran 𝑥 → Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))ran 𝑥)) |
| 12 | 9, 10, 11 | mpsyl 68 |
. . . . . 6
⊢ (𝜑 → Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))ran 𝑥) |
| 13 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝐷 ∈ 𝑉) |
| 14 | | tocyccntz.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ dom 𝑀) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝐴 ⊆ dom 𝑀) |
| 16 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) |
| 17 | 16 | eldifad 3943 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ 𝐴) |
| 18 | 15, 17 | sseldd 3964 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ dom 𝑀) |
| 19 | | fdm 6720 |
. . . . . . . . . . . . 13
⊢ (𝑀:{𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}⟶(Base‘𝑆) → dom 𝑀 = {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
| 20 | 13, 6, 19 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → dom 𝑀 = {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
| 21 | 18, 20 | eleqtrd 2837 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
| 22 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑥 → 𝑐 = 𝑥) |
| 23 | | dmeq 5888 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑥 → dom 𝑐 = dom 𝑥) |
| 24 | | eqidd 2737 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑥 → 𝐷 = 𝐷) |
| 25 | 22, 23, 24 | f1eq123d 6815 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑥 → (𝑐:dom 𝑐–1-1→𝐷 ↔ 𝑥:dom 𝑥–1-1→𝐷)) |
| 26 | 25 | elrab 3676 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷} ↔ (𝑥 ∈ Word 𝐷 ∧ 𝑥:dom 𝑥–1-1→𝐷)) |
| 27 | 21, 26 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → (𝑥 ∈ Word 𝐷 ∧ 𝑥:dom 𝑥–1-1→𝐷)) |
| 28 | 27 | simpld 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ Word 𝐷) |
| 29 | 27 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥:dom 𝑥–1-1→𝐷) |
| 30 | 16 | eldifbd 3944 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → ¬ 𝑥 ∈ (◡♯ “ {0, 1})) |
| 31 | | hashgt1 32792 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ V → (¬ 𝑥 ∈ (◡♯ “ {0, 1}) ↔ 1 <
(♯‘𝑥))) |
| 32 | 31 | elv 3469 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ (◡♯ “ {0, 1}) ↔ 1 <
(♯‘𝑥)) |
| 33 | 30, 32 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 1 <
(♯‘𝑥)) |
| 34 | 5, 13, 28, 29, 33 | cycpmrn 33159 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → ran 𝑥 = dom ((𝑀‘𝑥) ∖ I )) |
| 35 | 16 | fvresd 6901 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) = (𝑀‘𝑥)) |
| 36 | 35 | difeq1d 4105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I ) = ((𝑀‘𝑥) ∖ I )) |
| 37 | 36 | dmeqd 5890 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → dom
(((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I ) = dom ((𝑀‘𝑥) ∖ I )) |
| 38 | 34, 37 | eqtr4d 2774 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → ran 𝑥 = dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I )) |
| 39 | 38 | disjeq2dv 5096 |
. . . . . 6
⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))ran 𝑥 ↔ Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I ))) |
| 40 | 12, 39 | mpbid 232 |
. . . . 5
⊢ (𝜑 → Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I )) |
| 41 | 4, 6 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀:{𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}⟶(Base‘𝑆)) |
| 42 | 41 | ffdmd 6741 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀:dom 𝑀⟶(Base‘𝑆)) |
| 43 | 14 | ssdifssd 4127 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ (◡♯ “ {0, 1})) ⊆ dom 𝑀) |
| 44 | 42, 43 | fssresd 6750 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0,
1}))⟶(Base‘𝑆)) |
| 45 | 41, 14 | fssdmd 6729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ⊆ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
| 46 | 45 | ad4antr 732 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝐴 ⊆ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
| 47 | | simp-4r 783 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) |
| 48 | 47 | eldifad 3943 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ 𝐴) |
| 49 | 46, 48 | sseldd 3964 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
| 50 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑠 → 𝑐 = 𝑠) |
| 51 | | dmeq 5888 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑠 → dom 𝑐 = dom 𝑠) |
| 52 | | eqidd 2737 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑠 → 𝐷 = 𝐷) |
| 53 | 50, 51, 52 | f1eq123d 6815 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑠 → (𝑐:dom 𝑐–1-1→𝐷 ↔ 𝑠:dom 𝑠–1-1→𝐷)) |
| 54 | 53 | elrab 3676 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷} ↔ (𝑠 ∈ Word 𝐷 ∧ 𝑠:dom 𝑠–1-1→𝐷)) |
| 55 | 49, 54 | sylib 218 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (𝑠 ∈ Word 𝐷 ∧ 𝑠:dom 𝑠–1-1→𝐷)) |
| 56 | 55 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ Word 𝐷) |
| 57 | | wrdf 14541 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ Word 𝐷 → 𝑠:(0..^(♯‘𝑠))⟶𝐷) |
| 58 | | frel 6716 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠:(0..^(♯‘𝑠))⟶𝐷 → Rel 𝑠) |
| 59 | 56, 57, 58 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → Rel 𝑠) |
| 60 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) |
| 61 | 47 | fvresd 6901 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = (𝑀‘𝑠)) |
| 62 | 16 | ad5ant13 756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) |
| 63 | 62 | fvresd 6901 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) = (𝑀‘𝑥)) |
| 64 | 60, 61, 63 | 3eqtr3rd 2780 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (𝑀‘𝑥) = (𝑀‘𝑠)) |
| 65 | 64 | difeq1d 4105 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀‘𝑥) ∖ I ) = ((𝑀‘𝑠) ∖ I )) |
| 66 | 65 | dmeqd 5890 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → dom ((𝑀‘𝑥) ∖ I ) = dom ((𝑀‘𝑠) ∖ I )) |
| 67 | 4 | ad4antr 732 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝐷 ∈ 𝑉) |
| 68 | 17 | ad5ant13 756 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ 𝐴) |
| 69 | 46, 68 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
| 70 | 69, 26 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (𝑥 ∈ Word 𝐷 ∧ 𝑥:dom 𝑥–1-1→𝐷)) |
| 71 | 70 | simpld 494 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ Word 𝐷) |
| 72 | 70 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥:dom 𝑥–1-1→𝐷) |
| 73 | 33 | ad5ant13 756 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 1 < (♯‘𝑥)) |
| 74 | 5, 67, 71, 72, 73 | cycpmrn 33159 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑥 = dom ((𝑀‘𝑥) ∖ I )) |
| 75 | 55 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠:dom 𝑠–1-1→𝐷) |
| 76 | 14 | ssdifd 4125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐴 ∖ (◡♯ “ {0, 1})) ⊆ (dom 𝑀 ∖ (◡♯ “ {0, 1}))) |
| 77 | 76 | sselda 3963 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑠 ∈ (dom 𝑀 ∖ (◡♯ “ {0, 1}))) |
| 78 | 77 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ (dom 𝑀 ∖ (◡♯ “ {0, 1}))) |
| 79 | 78 | eldifbd 3944 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ¬ 𝑠 ∈ (◡♯ “ {0, 1})) |
| 80 | | hashgt1 32792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ 𝐴 → (¬ 𝑠 ∈ (◡♯ “ {0, 1}) ↔ 1 <
(♯‘𝑠))) |
| 81 | 80 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ∈ (◡♯ “ {0, 1})) → 1 <
(♯‘𝑠)) |
| 82 | 48, 79, 81 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 1 < (♯‘𝑠)) |
| 83 | 5, 67, 56, 75, 82 | cycpmrn 33159 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑠 = dom ((𝑀‘𝑠) ∖ I )) |
| 84 | 66, 74, 83 | 3eqtr4rd 2782 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑠 = ran 𝑥) |
| 85 | 84 | ineq2d 4200 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (ran 𝑥 ∩ ran 𝑠) = (ran 𝑥 ∩ ran 𝑥)) |
| 86 | | inidm 4207 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
𝑥 ∩ ran 𝑥) = ran 𝑥 |
| 87 | 85, 86 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (ran 𝑥 ∩ ran 𝑠) = ran 𝑥) |
| 88 | | rneq 5921 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → ran 𝑥 = ran 𝑦) |
| 89 | 88 | cbvdisjv 5102 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Disj 𝑥
∈ 𝐴 ran 𝑥 ↔ Disj 𝑦 ∈ 𝐴 ran 𝑦) |
| 90 | 10, 89 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 ran 𝑦) |
| 91 | 90 | ad4antr 732 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → Disj 𝑦 ∈ 𝐴 ran 𝑦) |
| 92 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ¬ 𝑠 = 𝑥) |
| 93 | 92 | neqned 2940 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ≠ 𝑥) |
| 94 | 93 | necomd 2988 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ≠ 𝑠) |
| 95 | | rneq 5921 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → ran 𝑦 = ran 𝑥) |
| 96 | | rneq 5921 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑠 → ran 𝑦 = ran 𝑠) |
| 97 | 95, 96 | disji2 5108 |
. . . . . . . . . . . . . . . . . 18
⊢
((Disj 𝑦
∈ 𝐴 ran 𝑦 ∧ (𝑥 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑥 ≠ 𝑠) → (ran 𝑥 ∩ ran 𝑠) = ∅) |
| 98 | 91, 68, 48, 94, 97 | syl121anc 1377 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (ran 𝑥 ∩ ran 𝑠) = ∅) |
| 99 | 87, 98 | eqtr3d 2773 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑥 = ∅) |
| 100 | 84, 99 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑠 = ∅) |
| 101 | | relrn0 5957 |
. . . . . . . . . . . . . . . 16
⊢ (Rel
𝑠 → (𝑠 = ∅ ↔ ran 𝑠 = ∅)) |
| 102 | 101 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
𝑠 ∧ ran 𝑠 = ∅) → 𝑠 = ∅) |
| 103 | 59, 100, 102 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 = ∅) |
| 104 | | wrdf 14541 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Word 𝐷 → 𝑥:(0..^(♯‘𝑥))⟶𝐷) |
| 105 | | frel 6716 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥:(0..^(♯‘𝑥))⟶𝐷 → Rel 𝑥) |
| 106 | 71, 104, 105 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → Rel 𝑥) |
| 107 | | relrn0 5957 |
. . . . . . . . . . . . . . . 16
⊢ (Rel
𝑥 → (𝑥 = ∅ ↔ ran 𝑥 = ∅)) |
| 108 | 107 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
𝑥 ∧ ran 𝑥 = ∅) → 𝑥 = ∅) |
| 109 | 106, 99, 108 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 = ∅) |
| 110 | 103, 109 | eqtr4d 2774 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 = 𝑥) |
| 111 | 110 | pm2.18da 799 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) → 𝑠 = 𝑥) |
| 112 | 111 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥)) |
| 113 | 112 | anasss 466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1})) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1})))) → (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥)) |
| 114 | 113 | ralrimivva 3188 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))∀𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))(((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥)) |
| 115 | | dff13 7252 |
. . . . . . . . 9
⊢ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1→(Base‘𝑆) ↔ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0,
1}))⟶(Base‘𝑆)
∧ ∀𝑠 ∈
(𝐴 ∖ (◡♯ “ {0, 1}))∀𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))(((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥))) |
| 116 | 44, 114, 115 | sylanbrc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1→(Base‘𝑆)) |
| 117 | | f1f1orn 6834 |
. . . . . . . 8
⊢ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1→(Base‘𝑆) → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→ran
(𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))) |
| 118 | 116, 117 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→ran
(𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))) |
| 119 | | df-ima 5672 |
. . . . . . . . 9
⊢ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) = ran (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))) |
| 120 | 119 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) = ran (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))) |
| 121 | 120 | f1oeq3d 6820 |
. . . . . . 7
⊢ (𝜑 → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→(𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ↔ (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→ran
(𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))))) |
| 122 | 118, 121 | mpbird 257 |
. . . . . 6
⊢ (𝜑 → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→(𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))) |
| 123 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) → 𝑐 = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) |
| 124 | 123 | difeq1d 4105 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) → (𝑐 ∖ I ) = (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I )) |
| 125 | 124 | dmeqd 5890 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) → dom (𝑐 ∖ I ) = dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I )) |
| 126 | 122, 125 | disjrdx 32577 |
. . . . 5
⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I ) ↔ Disj
𝑐 ∈ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))dom (𝑐 ∖ I ))) |
| 127 | 40, 126 | mpbid 232 |
. . . 4
⊢ (𝜑 → Disj 𝑐 ∈ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))dom (𝑐 ∖ I )) |
| 128 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → (𝑀‘𝑥) = 𝑐) |
| 129 | 4 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → 𝐷 ∈ 𝑉) |
| 130 | 14 | ssrind 4224 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∩ (◡♯ “ {0, 1})) ⊆ (dom 𝑀 ∩ (◡♯ “ {0, 1}))) |
| 131 | 130 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → (𝐴 ∩ (◡♯ “ {0, 1})) ⊆ (dom 𝑀 ∩ (◡♯ “ {0, 1}))) |
| 132 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) |
| 133 | 131, 132 | sseldd 3964 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → 𝑥 ∈ (dom 𝑀 ∩ (◡♯ “ {0, 1}))) |
| 134 | 5 | tocyc01 33134 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑥 ∈ (dom 𝑀 ∩ (◡♯ “ {0, 1}))) → (𝑀‘𝑥) = ( I ↾ 𝐷)) |
| 135 | 129, 133,
134 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → (𝑀‘𝑥) = ( I ↾ 𝐷)) |
| 136 | 128, 135 | eqtr3d 2773 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → 𝑐 = ( I ↾ 𝐷)) |
| 137 | 136 | difeq1d 4105 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → (𝑐 ∖ I ) = (( I ↾ 𝐷) ∖ I )) |
| 138 | 137 | dmeqd 5890 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → dom (𝑐 ∖ I ) = dom (( I ↾ 𝐷) ∖ I )) |
| 139 | | resdifcom 5990 |
. . . . . . . . . 10
⊢ (( I
↾ 𝐷) ∖ I ) = ((
I ∖ I ) ↾ 𝐷) |
| 140 | | difid 4356 |
. . . . . . . . . . 11
⊢ ( I
∖ I ) = ∅ |
| 141 | 140 | reseq1i 5967 |
. . . . . . . . . 10
⊢ (( I
∖ I ) ↾ 𝐷) =
(∅ ↾ 𝐷) |
| 142 | | 0res 32589 |
. . . . . . . . . 10
⊢ (∅
↾ 𝐷) =
∅ |
| 143 | 139, 141,
142 | 3eqtri 2763 |
. . . . . . . . 9
⊢ (( I
↾ 𝐷) ∖ I ) =
∅ |
| 144 | 143 | dmeqi 5889 |
. . . . . . . 8
⊢ dom (( I
↾ 𝐷) ∖ I ) =
dom ∅ |
| 145 | | dm0 5905 |
. . . . . . . 8
⊢ dom
∅ = ∅ |
| 146 | 144, 145 | eqtri 2759 |
. . . . . . 7
⊢ dom (( I
↾ 𝐷) ∖ I ) =
∅ |
| 147 | 138, 146 | eqtrdi 2787 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → dom (𝑐 ∖ I ) = ∅) |
| 148 | 41 | ffund 6715 |
. . . . . . 7
⊢ (𝜑 → Fun 𝑀) |
| 149 | | fvelima 6949 |
. . . . . . 7
⊢ ((Fun
𝑀 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) →
∃𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))(𝑀‘𝑥) = 𝑐) |
| 150 | 148, 149 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) →
∃𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))(𝑀‘𝑥) = 𝑐) |
| 151 | 147, 150 | r19.29a 3149 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) → dom (𝑐 ∖ I ) =
∅) |
| 152 | 151 | disjxun0 32560 |
. . . 4
⊢ (𝜑 → (Disj 𝑐 ∈ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))))dom (𝑐 ∖ I ) ↔ Disj
𝑐 ∈ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))dom (𝑐 ∖ I ))) |
| 153 | 127, 152 | mpbird 257 |
. . 3
⊢ (𝜑 → Disj 𝑐 ∈ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))))dom (𝑐 ∖ I )) |
| 154 | | uncom 4138 |
. . . . . 6
⊢ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) = ((𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))) |
| 155 | | imaundi 6143 |
. . . . . 6
⊢ (𝑀 “ ((𝐴 ∩ (◡♯ “ {0, 1})) ∪ (𝐴 ∖ (◡♯ “ {0, 1})))) = ((𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))) |
| 156 | | inundif 4459 |
. . . . . . 7
⊢ ((𝐴 ∩ (◡♯ “ {0, 1})) ∪ (𝐴 ∖ (◡♯ “ {0, 1}))) = 𝐴 |
| 157 | 156 | imaeq2i 6050 |
. . . . . 6
⊢ (𝑀 “ ((𝐴 ∩ (◡♯ “ {0, 1})) ∪ (𝐴 ∖ (◡♯ “ {0, 1})))) = (𝑀 “ 𝐴) |
| 158 | 154, 155,
157 | 3eqtr2i 2765 |
. . . . 5
⊢ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) = (𝑀 “ 𝐴) |
| 159 | 158 | a1i 11 |
. . . 4
⊢ (𝜑 → ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) = (𝑀 “ 𝐴)) |
| 160 | 159 | disjeq1d 5099 |
. . 3
⊢ (𝜑 → (Disj 𝑐 ∈ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))))dom (𝑐 ∖ I ) ↔ Disj
𝑐 ∈ (𝑀 “ 𝐴)dom (𝑐 ∖ I ))) |
| 161 | 153, 160 | mpbid 232 |
. 2
⊢ (𝜑 → Disj 𝑐 ∈ (𝑀 “ 𝐴)dom (𝑐 ∖ I )) |
| 162 | 1, 2, 3, 8, 161 | symgcntz 33101 |
1
⊢ (𝜑 → (𝑀 “ 𝐴) ⊆ (𝑍‘(𝑀 “ 𝐴))) |