Step | Hyp | Ref
| Expression |
1 | | tocyccntz.s |
. 2
⊢ 𝑆 = (SymGrp‘𝐷) |
2 | | eqid 2738 |
. 2
⊢
(Base‘𝑆) =
(Base‘𝑆) |
3 | | tocyccntz.z |
. 2
⊢ 𝑍 = (Cntz‘𝑆) |
4 | | tocyccntz.1 |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
5 | | tocyccntz.m |
. . . 4
⊢ 𝑀 = (toCyc‘𝐷) |
6 | 5, 1, 2 | tocycf 31286 |
. . 3
⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}⟶(Base‘𝑆)) |
7 | | fimass 6605 |
. . 3
⊢ (𝑀:{𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}⟶(Base‘𝑆) → (𝑀 “ 𝐴) ⊆ (Base‘𝑆)) |
8 | 4, 6, 7 | 3syl 18 |
. 2
⊢ (𝜑 → (𝑀 “ 𝐴) ⊆ (Base‘𝑆)) |
9 | | difss 4062 |
. . . . . . 7
⊢ (𝐴 ∖ (◡♯ “ {0, 1})) ⊆ 𝐴 |
10 | | tocyccntz.2 |
. . . . . . 7
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ran 𝑥) |
11 | | disjss1 5041 |
. . . . . . 7
⊢ ((𝐴 ∖ (◡♯ “ {0, 1})) ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 ran 𝑥 → Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))ran 𝑥)) |
12 | 9, 10, 11 | mpsyl 68 |
. . . . . 6
⊢ (𝜑 → Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))ran 𝑥) |
13 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝐷 ∈ 𝑉) |
14 | | tocyccntz.a |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ dom 𝑀) |
15 | 14 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝐴 ⊆ dom 𝑀) |
16 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) |
17 | 16 | eldifad 3895 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ 𝐴) |
18 | 15, 17 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ dom 𝑀) |
19 | | fdm 6593 |
. . . . . . . . . . . . 13
⊢ (𝑀:{𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}⟶(Base‘𝑆) → dom 𝑀 = {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
20 | 13, 6, 19 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → dom 𝑀 = {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
21 | 18, 20 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
22 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑥 → 𝑐 = 𝑥) |
23 | | dmeq 5801 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑥 → dom 𝑐 = dom 𝑥) |
24 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑥 → 𝐷 = 𝐷) |
25 | 22, 23, 24 | f1eq123d 6692 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝑥 → (𝑐:dom 𝑐–1-1→𝐷 ↔ 𝑥:dom 𝑥–1-1→𝐷)) |
26 | 25 | elrab 3617 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷} ↔ (𝑥 ∈ Word 𝐷 ∧ 𝑥:dom 𝑥–1-1→𝐷)) |
27 | 21, 26 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → (𝑥 ∈ Word 𝐷 ∧ 𝑥:dom 𝑥–1-1→𝐷)) |
28 | 27 | simpld 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥 ∈ Word 𝐷) |
29 | 27 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑥:dom 𝑥–1-1→𝐷) |
30 | 16 | eldifbd 3896 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → ¬ 𝑥 ∈ (◡♯ “ {0, 1})) |
31 | | hashgt1 31030 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ V → (¬ 𝑥 ∈ (◡♯ “ {0, 1}) ↔ 1 <
(♯‘𝑥))) |
32 | 31 | elv 3428 |
. . . . . . . . . 10
⊢ (¬
𝑥 ∈ (◡♯ “ {0, 1}) ↔ 1 <
(♯‘𝑥)) |
33 | 30, 32 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 1 <
(♯‘𝑥)) |
34 | 5, 13, 28, 29, 33 | cycpmrn 31312 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → ran 𝑥 = dom ((𝑀‘𝑥) ∖ I )) |
35 | 16 | fvresd 6776 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) = (𝑀‘𝑥)) |
36 | 35 | difeq1d 4052 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I ) = ((𝑀‘𝑥) ∖ I )) |
37 | 36 | dmeqd 5803 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → dom
(((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I ) = dom ((𝑀‘𝑥) ∖ I )) |
38 | 34, 37 | eqtr4d 2781 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → ran 𝑥 = dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I )) |
39 | 38 | disjeq2dv 5040 |
. . . . . 6
⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))ran 𝑥 ↔ Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I ))) |
40 | 12, 39 | mpbid 231 |
. . . . 5
⊢ (𝜑 → Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I )) |
41 | 4, 6 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀:{𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}⟶(Base‘𝑆)) |
42 | 41 | ffdmd 6615 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀:dom 𝑀⟶(Base‘𝑆)) |
43 | 14 | ssdifssd 4073 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∖ (◡♯ “ {0, 1})) ⊆ dom 𝑀) |
44 | 42, 43 | fssresd 6625 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0,
1}))⟶(Base‘𝑆)) |
45 | 41, 14 | fssdmd 6603 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ⊆ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
46 | 45 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝐴 ⊆ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
47 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) |
48 | 47 | eldifad 3895 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ 𝐴) |
49 | 46, 48 | sseldd 3918 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
50 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑠 → 𝑐 = 𝑠) |
51 | | dmeq 5801 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑠 → dom 𝑐 = dom 𝑠) |
52 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑠 → 𝐷 = 𝐷) |
53 | 50, 51, 52 | f1eq123d 6692 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑠 → (𝑐:dom 𝑐–1-1→𝐷 ↔ 𝑠:dom 𝑠–1-1→𝐷)) |
54 | 53 | elrab 3617 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑠 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷} ↔ (𝑠 ∈ Word 𝐷 ∧ 𝑠:dom 𝑠–1-1→𝐷)) |
55 | 49, 54 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (𝑠 ∈ Word 𝐷 ∧ 𝑠:dom 𝑠–1-1→𝐷)) |
56 | 55 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ Word 𝐷) |
57 | | wrdf 14150 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ Word 𝐷 → 𝑠:(0..^(♯‘𝑠))⟶𝐷) |
58 | | frel 6589 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠:(0..^(♯‘𝑠))⟶𝐷 → Rel 𝑠) |
59 | 56, 57, 58 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → Rel 𝑠) |
60 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) |
61 | 47 | fvresd 6776 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = (𝑀‘𝑠)) |
62 | 16 | ad5ant13 753 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) |
63 | 62 | fvresd 6776 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) = (𝑀‘𝑥)) |
64 | 60, 61, 63 | 3eqtr3rd 2787 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (𝑀‘𝑥) = (𝑀‘𝑠)) |
65 | 64 | difeq1d 4052 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀‘𝑥) ∖ I ) = ((𝑀‘𝑠) ∖ I )) |
66 | 65 | dmeqd 5803 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → dom ((𝑀‘𝑥) ∖ I ) = dom ((𝑀‘𝑠) ∖ I )) |
67 | 4 | ad4antr 728 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝐷 ∈ 𝑉) |
68 | 17 | ad5ant13 753 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ 𝐴) |
69 | 46, 68 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ {𝑐 ∈ Word 𝐷 ∣ 𝑐:dom 𝑐–1-1→𝐷}) |
70 | 69, 26 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (𝑥 ∈ Word 𝐷 ∧ 𝑥:dom 𝑥–1-1→𝐷)) |
71 | 70 | simpld 494 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ Word 𝐷) |
72 | 70 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥:dom 𝑥–1-1→𝐷) |
73 | 33 | ad5ant13 753 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 1 < (♯‘𝑥)) |
74 | 5, 67, 71, 72, 73 | cycpmrn 31312 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑥 = dom ((𝑀‘𝑥) ∖ I )) |
75 | 55 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠:dom 𝑠–1-1→𝐷) |
76 | 14 | ssdifd 4071 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝐴 ∖ (◡♯ “ {0, 1})) ⊆ (dom 𝑀 ∖ (◡♯ “ {0, 1}))) |
77 | 76 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → 𝑠 ∈ (dom 𝑀 ∖ (◡♯ “ {0, 1}))) |
78 | 77 | ad3antrrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ (dom 𝑀 ∖ (◡♯ “ {0, 1}))) |
79 | 78 | eldifbd 3896 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ¬ 𝑠 ∈ (◡♯ “ {0, 1})) |
80 | | hashgt1 31030 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ 𝐴 → (¬ 𝑠 ∈ (◡♯ “ {0, 1}) ↔ 1 <
(♯‘𝑠))) |
81 | 80 | biimpa 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ∈ (◡♯ “ {0, 1})) → 1 <
(♯‘𝑠)) |
82 | 48, 79, 81 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 1 < (♯‘𝑠)) |
83 | 5, 67, 56, 75, 82 | cycpmrn 31312 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑠 = dom ((𝑀‘𝑠) ∖ I )) |
84 | 66, 74, 83 | 3eqtr4rd 2789 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑠 = ran 𝑥) |
85 | 84 | ineq2d 4143 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (ran 𝑥 ∩ ran 𝑠) = (ran 𝑥 ∩ ran 𝑥)) |
86 | | inidm 4149 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
𝑥 ∩ ran 𝑥) = ran 𝑥 |
87 | 85, 86 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (ran 𝑥 ∩ ran 𝑠) = ran 𝑥) |
88 | | rneq 5834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → ran 𝑥 = ran 𝑦) |
89 | 88 | cbvdisjv 5046 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Disj 𝑥
∈ 𝐴 ran 𝑥 ↔ Disj 𝑦 ∈ 𝐴 ran 𝑦) |
90 | 10, 89 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Disj 𝑦 ∈ 𝐴 ran 𝑦) |
91 | 90 | ad4antr 728 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → Disj 𝑦 ∈ 𝐴 ran 𝑦) |
92 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ¬ 𝑠 = 𝑥) |
93 | 92 | neqned 2949 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ≠ 𝑥) |
94 | 93 | necomd 2998 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ≠ 𝑠) |
95 | | rneq 5834 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → ran 𝑦 = ran 𝑥) |
96 | | rneq 5834 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑠 → ran 𝑦 = ran 𝑠) |
97 | 95, 96 | disji2 5052 |
. . . . . . . . . . . . . . . . . 18
⊢
((Disj 𝑦
∈ 𝐴 ran 𝑦 ∧ (𝑥 ∈ 𝐴 ∧ 𝑠 ∈ 𝐴) ∧ 𝑥 ≠ 𝑠) → (ran 𝑥 ∩ ran 𝑠) = ∅) |
98 | 91, 68, 48, 94, 97 | syl121anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (ran 𝑥 ∩ ran 𝑠) = ∅) |
99 | 87, 98 | eqtr3d 2780 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑥 = ∅) |
100 | 84, 99 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑠 = ∅) |
101 | | relrn0 5867 |
. . . . . . . . . . . . . . . 16
⊢ (Rel
𝑠 → (𝑠 = ∅ ↔ ran 𝑠 = ∅)) |
102 | 101 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
𝑠 ∧ ran 𝑠 = ∅) → 𝑠 = ∅) |
103 | 59, 100, 102 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 = ∅) |
104 | | wrdf 14150 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ Word 𝐷 → 𝑥:(0..^(♯‘𝑥))⟶𝐷) |
105 | | frel 6589 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥:(0..^(♯‘𝑥))⟶𝐷 → Rel 𝑥) |
106 | 71, 104, 105 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → Rel 𝑥) |
107 | | relrn0 5867 |
. . . . . . . . . . . . . . . 16
⊢ (Rel
𝑥 → (𝑥 = ∅ ↔ ran 𝑥 = ∅)) |
108 | 107 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
𝑥 ∧ ran 𝑥 = ∅) → 𝑥 = ∅) |
109 | 106, 99, 108 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 = ∅) |
110 | 103, 109 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 = 𝑥) |
111 | 110 | pm2.18da 796 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) → 𝑠 = 𝑥) |
112 | 111 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))) → (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥)) |
113 | 112 | anasss 466 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1})) ∧ 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1})))) → (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥)) |
114 | 113 | ralrimivva 3114 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑠 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))∀𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))(((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥)) |
115 | | dff13 7109 |
. . . . . . . . 9
⊢ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1→(Base‘𝑆) ↔ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0,
1}))⟶(Base‘𝑆)
∧ ∀𝑠 ∈
(𝐴 ∖ (◡♯ “ {0, 1}))∀𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))(((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥))) |
116 | 44, 114, 115 | sylanbrc 582 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1→(Base‘𝑆)) |
117 | | f1f1orn 6711 |
. . . . . . . 8
⊢ ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1→(Base‘𝑆) → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→ran
(𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))) |
118 | 116, 117 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→ran
(𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))) |
119 | | df-ima 5593 |
. . . . . . . . 9
⊢ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) = ran (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))) |
120 | 119 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) = ran (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))) |
121 | 120 | f1oeq3d 6697 |
. . . . . . 7
⊢ (𝜑 → ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→(𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ↔ (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→ran
(𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))))) |
122 | 118, 121 | mpbird 256 |
. . . . . 6
⊢ (𝜑 → (𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1}))):(𝐴 ∖ (◡♯ “ {0, 1}))–1-1-onto→(𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))) |
123 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) → 𝑐 = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) |
124 | 123 | difeq1d 4052 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) → (𝑐 ∖ I ) = (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I )) |
125 | 124 | dmeqd 5803 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 = ((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥)) → dom (𝑐 ∖ I ) = dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I )) |
126 | 122, 125 | disjrdx 30831 |
. . . . 5
⊢ (𝜑 → (Disj 𝑥 ∈ (𝐴 ∖ (◡♯ “ {0, 1}))dom (((𝑀 ↾ (𝐴 ∖ (◡♯ “ {0, 1})))‘𝑥) ∖ I ) ↔ Disj
𝑐 ∈ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))dom (𝑐 ∖ I ))) |
127 | 40, 126 | mpbid 231 |
. . . 4
⊢ (𝜑 → Disj 𝑐 ∈ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))dom (𝑐 ∖ I )) |
128 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → (𝑀‘𝑥) = 𝑐) |
129 | 4 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → 𝐷 ∈ 𝑉) |
130 | 14 | ssrind 4166 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 ∩ (◡♯ “ {0, 1})) ⊆ (dom 𝑀 ∩ (◡♯ “ {0, 1}))) |
131 | 130 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → (𝐴 ∩ (◡♯ “ {0, 1})) ⊆ (dom 𝑀 ∩ (◡♯ “ {0, 1}))) |
132 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) |
133 | 131, 132 | sseldd 3918 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → 𝑥 ∈ (dom 𝑀 ∩ (◡♯ “ {0, 1}))) |
134 | 5 | tocyc01 31287 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ 𝑉 ∧ 𝑥 ∈ (dom 𝑀 ∩ (◡♯ “ {0, 1}))) → (𝑀‘𝑥) = ( I ↾ 𝐷)) |
135 | 129, 133,
134 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → (𝑀‘𝑥) = ( I ↾ 𝐷)) |
136 | 128, 135 | eqtr3d 2780 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → 𝑐 = ( I ↾ 𝐷)) |
137 | 136 | difeq1d 4052 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → (𝑐 ∖ I ) = (( I ↾ 𝐷) ∖ I )) |
138 | 137 | dmeqd 5803 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → dom (𝑐 ∖ I ) = dom (( I ↾ 𝐷) ∖ I )) |
139 | | resdifcom 5899 |
. . . . . . . . . 10
⊢ (( I
↾ 𝐷) ∖ I ) = ((
I ∖ I ) ↾ 𝐷) |
140 | | difid 4301 |
. . . . . . . . . . 11
⊢ ( I
∖ I ) = ∅ |
141 | 140 | reseq1i 5876 |
. . . . . . . . . 10
⊢ (( I
∖ I ) ↾ 𝐷) =
(∅ ↾ 𝐷) |
142 | | 0res 30844 |
. . . . . . . . . 10
⊢ (∅
↾ 𝐷) =
∅ |
143 | 139, 141,
142 | 3eqtri 2770 |
. . . . . . . . 9
⊢ (( I
↾ 𝐷) ∖ I ) =
∅ |
144 | 143 | dmeqi 5802 |
. . . . . . . 8
⊢ dom (( I
↾ 𝐷) ∖ I ) =
dom ∅ |
145 | | dm0 5818 |
. . . . . . . 8
⊢ dom
∅ = ∅ |
146 | 144, 145 | eqtri 2766 |
. . . . . . 7
⊢ dom (( I
↾ 𝐷) ∖ I ) =
∅ |
147 | 138, 146 | eqtrdi 2795 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))) ∧ (𝑀‘𝑥) = 𝑐) → dom (𝑐 ∖ I ) = ∅) |
148 | 41 | ffund 6588 |
. . . . . . 7
⊢ (𝜑 → Fun 𝑀) |
149 | | fvelima 6817 |
. . . . . . 7
⊢ ((Fun
𝑀 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) →
∃𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))(𝑀‘𝑥) = 𝑐) |
150 | 148, 149 | sylan 579 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) →
∃𝑥 ∈ (𝐴 ∩ (◡♯ “ {0, 1}))(𝑀‘𝑥) = 𝑐) |
151 | 147, 150 | r19.29a 3217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) → dom (𝑐 ∖ I ) =
∅) |
152 | 151 | disjxun0 30814 |
. . . 4
⊢ (𝜑 → (Disj 𝑐 ∈ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))))dom (𝑐 ∖ I ) ↔ Disj
𝑐 ∈ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))dom (𝑐 ∖ I ))) |
153 | 127, 152 | mpbird 256 |
. . 3
⊢ (𝜑 → Disj 𝑐 ∈ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))))dom (𝑐 ∖ I )) |
154 | | uncom 4083 |
. . . . . 6
⊢ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) = ((𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))) |
155 | | imaundi 6042 |
. . . . . 6
⊢ (𝑀 “ ((𝐴 ∩ (◡♯ “ {0, 1})) ∪ (𝐴 ∖ (◡♯ “ {0, 1})))) = ((𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1})))) |
156 | | inundif 4409 |
. . . . . . 7
⊢ ((𝐴 ∩ (◡♯ “ {0, 1})) ∪ (𝐴 ∖ (◡♯ “ {0, 1}))) = 𝐴 |
157 | 156 | imaeq2i 5956 |
. . . . . 6
⊢ (𝑀 “ ((𝐴 ∩ (◡♯ “ {0, 1})) ∪ (𝐴 ∖ (◡♯ “ {0, 1})))) = (𝑀 “ 𝐴) |
158 | 154, 155,
157 | 3eqtr2i 2772 |
. . . . 5
⊢ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) = (𝑀 “ 𝐴) |
159 | 158 | a1i 11 |
. . . 4
⊢ (𝜑 → ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1})))) = (𝑀 “ 𝐴)) |
160 | 159 | disjeq1d 5043 |
. . 3
⊢ (𝜑 → (Disj 𝑐 ∈ ((𝑀 “ (𝐴 ∖ (◡♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (◡♯ “ {0, 1}))))dom (𝑐 ∖ I ) ↔ Disj
𝑐 ∈ (𝑀 “ 𝐴)dom (𝑐 ∖ I ))) |
161 | 153, 160 | mpbid 231 |
. 2
⊢ (𝜑 → Disj 𝑐 ∈ (𝑀 “ 𝐴)dom (𝑐 ∖ I )) |
162 | 1, 2, 3, 8, 161 | symgcntz 31256 |
1
⊢ (𝜑 → (𝑀 “ 𝐴) ⊆ (𝑍‘(𝑀 “ 𝐴))) |