Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocyccntz Structured version   Visualization version   GIF version

Theorem tocyccntz 30836
Description: All elements of a (finite) set of cycles commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypotheses
Ref Expression
tocyccntz.s 𝑆 = (SymGrp‘𝐷)
tocyccntz.z 𝑍 = (Cntz‘𝑆)
tocyccntz.m 𝑀 = (toCyc‘𝐷)
tocyccntz.1 (𝜑𝐷𝑉)
tocyccntz.2 (𝜑Disj 𝑥𝐴 ran 𝑥)
tocyccntz.a (𝜑𝐴 ⊆ dom 𝑀)
Assertion
Ref Expression
tocyccntz (𝜑 → (𝑀𝐴) ⊆ (𝑍‘(𝑀𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑍(𝑥)

Proof of Theorem tocyccntz
Dummy variables 𝑐 𝑠 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tocyccntz.s . 2 𝑆 = (SymGrp‘𝐷)
2 eqid 2798 . 2 (Base‘𝑆) = (Base‘𝑆)
3 tocyccntz.z . 2 𝑍 = (Cntz‘𝑆)
4 tocyccntz.1 . . 3 (𝜑𝐷𝑉)
5 tocyccntz.m . . . 4 𝑀 = (toCyc‘𝐷)
65, 1, 2tocycf 30809 . . 3 (𝐷𝑉𝑀:{𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷}⟶(Base‘𝑆))
7 fimass 6529 . . 3 (𝑀:{𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷}⟶(Base‘𝑆) → (𝑀𝐴) ⊆ (Base‘𝑆))
84, 6, 73syl 18 . 2 (𝜑 → (𝑀𝐴) ⊆ (Base‘𝑆))
9 difss 4059 . . . . . . 7 (𝐴 ∖ (♯ “ {0, 1})) ⊆ 𝐴
10 tocyccntz.2 . . . . . . 7 (𝜑Disj 𝑥𝐴 ran 𝑥)
11 disjss1 5001 . . . . . . 7 ((𝐴 ∖ (♯ “ {0, 1})) ⊆ 𝐴 → (Disj 𝑥𝐴 ran 𝑥Disj 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))ran 𝑥))
129, 10, 11mpsyl 68 . . . . . 6 (𝜑Disj 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))ran 𝑥)
134adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 𝐷𝑉)
14 tocyccntz.a . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ dom 𝑀)
1514adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 𝐴 ⊆ dom 𝑀)
16 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1})))
1716eldifad 3893 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 𝑥𝐴)
1815, 17sseldd 3916 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 𝑥 ∈ dom 𝑀)
19 fdm 6495 . . . . . . . . . . . . 13 (𝑀:{𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷}⟶(Base‘𝑆) → dom 𝑀 = {𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷})
2013, 6, 193syl 18 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → dom 𝑀 = {𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷})
2118, 20eleqtrd 2892 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 𝑥 ∈ {𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷})
22 id 22 . . . . . . . . . . . . 13 (𝑐 = 𝑥𝑐 = 𝑥)
23 dmeq 5736 . . . . . . . . . . . . 13 (𝑐 = 𝑥 → dom 𝑐 = dom 𝑥)
24 eqidd 2799 . . . . . . . . . . . . 13 (𝑐 = 𝑥𝐷 = 𝐷)
2522, 23, 24f1eq123d 6583 . . . . . . . . . . . 12 (𝑐 = 𝑥 → (𝑐:dom 𝑐1-1𝐷𝑥:dom 𝑥1-1𝐷))
2625elrab 3628 . . . . . . . . . . 11 (𝑥 ∈ {𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷} ↔ (𝑥 ∈ Word 𝐷𝑥:dom 𝑥1-1𝐷))
2721, 26sylib 221 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → (𝑥 ∈ Word 𝐷𝑥:dom 𝑥1-1𝐷))
2827simpld 498 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 𝑥 ∈ Word 𝐷)
2927simprd 499 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 𝑥:dom 𝑥1-1𝐷)
3016eldifbd 3894 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → ¬ 𝑥 ∈ (♯ “ {0, 1}))
31 hashgt1 30556 . . . . . . . . . . 11 (𝑥 ∈ V → (¬ 𝑥 ∈ (♯ “ {0, 1}) ↔ 1 < (♯‘𝑥)))
3231elv 3446 . . . . . . . . . 10 𝑥 ∈ (♯ “ {0, 1}) ↔ 1 < (♯‘𝑥))
3330, 32sylib 221 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 1 < (♯‘𝑥))
345, 13, 28, 29, 33cycpmrn 30835 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → ran 𝑥 = dom ((𝑀𝑥) ∖ I ))
3516fvresd 6665 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) = (𝑀𝑥))
3635difeq1d 4049 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) ∖ I ) = ((𝑀𝑥) ∖ I ))
3736dmeqd 5738 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → dom (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) ∖ I ) = dom ((𝑀𝑥) ∖ I ))
3834, 37eqtr4d 2836 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → ran 𝑥 = dom (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) ∖ I ))
3938disjeq2dv 5000 . . . . . 6 (𝜑 → (Disj 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))ran 𝑥Disj 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))dom (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) ∖ I )))
4012, 39mpbid 235 . . . . 5 (𝜑Disj 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))dom (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) ∖ I ))
414, 6syl 17 . . . . . . . . . . 11 (𝜑𝑀:{𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷}⟶(Base‘𝑆))
4241ffdmd 6511 . . . . . . . . . 10 (𝜑𝑀:dom 𝑀⟶(Base‘𝑆))
4314ssdifssd 4070 . . . . . . . . . 10 (𝜑 → (𝐴 ∖ (♯ “ {0, 1})) ⊆ dom 𝑀)
4442, 43fssresd 6519 . . . . . . . . 9 (𝜑 → (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))⟶(Base‘𝑆))
4541, 14fssdmd 6503 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ⊆ {𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷})
4645ad4antr 731 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝐴 ⊆ {𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷})
47 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1})))
4847eldifad 3893 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠𝐴)
4946, 48sseldd 3916 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ {𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷})
50 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑠𝑐 = 𝑠)
51 dmeq 5736 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑠 → dom 𝑐 = dom 𝑠)
52 eqidd 2799 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑠𝐷 = 𝐷)
5350, 51, 52f1eq123d 6583 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑠 → (𝑐:dom 𝑐1-1𝐷𝑠:dom 𝑠1-1𝐷))
5453elrab 3628 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ {𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷} ↔ (𝑠 ∈ Word 𝐷𝑠:dom 𝑠1-1𝐷))
5549, 54sylib 221 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (𝑠 ∈ Word 𝐷𝑠:dom 𝑠1-1𝐷))
5655simpld 498 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ Word 𝐷)
57 wrdf 13862 . . . . . . . . . . . . . . . 16 (𝑠 ∈ Word 𝐷𝑠:(0..^(♯‘𝑠))⟶𝐷)
58 frel 6492 . . . . . . . . . . . . . . . 16 (𝑠:(0..^(♯‘𝑠))⟶𝐷 → Rel 𝑠)
5956, 57, 583syl 18 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → Rel 𝑠)
60 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥))
6147fvresd 6665 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = (𝑀𝑠))
6216ad5ant13 756 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1})))
6362fvresd 6665 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) = (𝑀𝑥))
6460, 61, 633eqtr3rd 2842 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (𝑀𝑥) = (𝑀𝑠))
6564difeq1d 4049 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ((𝑀𝑥) ∖ I ) = ((𝑀𝑠) ∖ I ))
6665dmeqd 5738 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → dom ((𝑀𝑥) ∖ I ) = dom ((𝑀𝑠) ∖ I ))
674ad4antr 731 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝐷𝑉)
6817ad5ant13 756 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥𝐴)
6946, 68sseldd 3916 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ {𝑐 ∈ Word 𝐷𝑐:dom 𝑐1-1𝐷})
7069, 26sylib 221 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (𝑥 ∈ Word 𝐷𝑥:dom 𝑥1-1𝐷))
7170simpld 498 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 ∈ Word 𝐷)
7270simprd 499 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥:dom 𝑥1-1𝐷)
7333ad5ant13 756 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 1 < (♯‘𝑥))
745, 67, 71, 72, 73cycpmrn 30835 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑥 = dom ((𝑀𝑥) ∖ I ))
7555simprd 499 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠:dom 𝑠1-1𝐷)
7614ssdifd 4068 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 ∖ (♯ “ {0, 1})) ⊆ (dom 𝑀 ∖ (♯ “ {0, 1})))
7776sselda 3915 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → 𝑠 ∈ (dom 𝑀 ∖ (♯ “ {0, 1})))
7877ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 ∈ (dom 𝑀 ∖ (♯ “ {0, 1})))
7978eldifbd 3894 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ¬ 𝑠 ∈ (♯ “ {0, 1}))
80 hashgt1 30556 . . . . . . . . . . . . . . . . . . . 20 (𝑠𝐴 → (¬ 𝑠 ∈ (♯ “ {0, 1}) ↔ 1 < (♯‘𝑠)))
8180biimpa 480 . . . . . . . . . . . . . . . . . . 19 ((𝑠𝐴 ∧ ¬ 𝑠 ∈ (♯ “ {0, 1})) → 1 < (♯‘𝑠))
8248, 79, 81syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 1 < (♯‘𝑠))
835, 67, 56, 75, 82cycpmrn 30835 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑠 = dom ((𝑀𝑠) ∖ I ))
8466, 74, 833eqtr4rd 2844 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑠 = ran 𝑥)
8584ineq2d 4139 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (ran 𝑥 ∩ ran 𝑠) = (ran 𝑥 ∩ ran 𝑥))
86 inidm 4145 . . . . . . . . . . . . . . . . . 18 (ran 𝑥 ∩ ran 𝑥) = ran 𝑥
8785, 86eqtrdi 2849 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (ran 𝑥 ∩ ran 𝑠) = ran 𝑥)
88 rneq 5770 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ran 𝑥 = ran 𝑦)
8988cbvdisjv 5006 . . . . . . . . . . . . . . . . . . . 20 (Disj 𝑥𝐴 ran 𝑥Disj 𝑦𝐴 ran 𝑦)
9010, 89sylib 221 . . . . . . . . . . . . . . . . . . 19 (𝜑Disj 𝑦𝐴 ran 𝑦)
9190ad4antr 731 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → Disj 𝑦𝐴 ran 𝑦)
92 simpr 488 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ¬ 𝑠 = 𝑥)
9392neqned 2994 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠𝑥)
9493necomd 3042 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥𝑠)
95 rneq 5770 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ran 𝑦 = ran 𝑥)
96 rneq 5770 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑠 → ran 𝑦 = ran 𝑠)
9795, 96disji2 5012 . . . . . . . . . . . . . . . . . 18 ((Disj 𝑦𝐴 ran 𝑦 ∧ (𝑥𝐴𝑠𝐴) ∧ 𝑥𝑠) → (ran 𝑥 ∩ ran 𝑠) = ∅)
9891, 68, 48, 94, 97syl121anc 1372 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → (ran 𝑥 ∩ ran 𝑠) = ∅)
9987, 98eqtr3d 2835 . . . . . . . . . . . . . . . 16 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑥 = ∅)
10084, 99eqtrd 2833 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → ran 𝑠 = ∅)
101 relrn0 5805 . . . . . . . . . . . . . . . 16 (Rel 𝑠 → (𝑠 = ∅ ↔ ran 𝑠 = ∅))
102101biimpar 481 . . . . . . . . . . . . . . 15 ((Rel 𝑠 ∧ ran 𝑠 = ∅) → 𝑠 = ∅)
10359, 100, 102syl2anc 587 . . . . . . . . . . . . . 14 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 = ∅)
104 wrdf 13862 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word 𝐷𝑥:(0..^(♯‘𝑥))⟶𝐷)
105 frel 6492 . . . . . . . . . . . . . . . 16 (𝑥:(0..^(♯‘𝑥))⟶𝐷 → Rel 𝑥)
10671, 104, 1053syl 18 . . . . . . . . . . . . . . 15 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → Rel 𝑥)
107 relrn0 5805 . . . . . . . . . . . . . . . 16 (Rel 𝑥 → (𝑥 = ∅ ↔ ran 𝑥 = ∅))
108107biimpar 481 . . . . . . . . . . . . . . 15 ((Rel 𝑥 ∧ ran 𝑥 = ∅) → 𝑥 = ∅)
109106, 99, 108syl2anc 587 . . . . . . . . . . . . . 14 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑥 = ∅)
110103, 109eqtr4d 2836 . . . . . . . . . . . . 13 (((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) ∧ ¬ 𝑠 = 𝑥) → 𝑠 = 𝑥)
111110pm2.18da 799 . . . . . . . . . . . 12 ((((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) → 𝑠 = 𝑥)
112111ex 416 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))) → (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥))
113112anasss 470 . . . . . . . . . 10 ((𝜑 ∧ (𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1})) ∧ 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1})))) → (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥))
114113ralrimivva 3156 . . . . . . . . 9 (𝜑 → ∀𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))∀𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))(((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥))
115 dff13 6991 . . . . . . . . 9 ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))–1-1→(Base‘𝑆) ↔ ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (𝐴 ∖ (♯ “ {0, 1}))∀𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))(((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑠) = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) → 𝑠 = 𝑥)))
11644, 114, 115sylanbrc 586 . . . . . . . 8 (𝜑 → (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))–1-1→(Base‘𝑆))
117 f1f1orn 6601 . . . . . . . 8 ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))–1-1→(Base‘𝑆) → (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))–1-1-onto→ran (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))))
118116, 117syl 17 . . . . . . 7 (𝜑 → (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))–1-1-onto→ran (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))))
119 df-ima 5532 . . . . . . . . 9 (𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))) = ran (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))
120119a1i 11 . . . . . . . 8 (𝜑 → (𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))) = ran (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))))
121120f1oeq3d 6587 . . . . . . 7 (𝜑 → ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))–1-1-onto→(𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))) ↔ (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))–1-1-onto→ran (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))))
122118, 121mpbird 260 . . . . . 6 (𝜑 → (𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1}))):(𝐴 ∖ (♯ “ {0, 1}))–1-1-onto→(𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))))
123 simpr 488 . . . . . . . 8 ((𝜑𝑐 = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) → 𝑐 = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥))
124123difeq1d 4049 . . . . . . 7 ((𝜑𝑐 = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) → (𝑐 ∖ I ) = (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) ∖ I ))
125124dmeqd 5738 . . . . . 6 ((𝜑𝑐 = ((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥)) → dom (𝑐 ∖ I ) = dom (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) ∖ I ))
126122, 125disjrdx 30354 . . . . 5 (𝜑 → (Disj 𝑥 ∈ (𝐴 ∖ (♯ “ {0, 1}))dom (((𝑀 ↾ (𝐴 ∖ (♯ “ {0, 1})))‘𝑥) ∖ I ) ↔ Disj 𝑐 ∈ (𝑀 “ (𝐴 ∖ (♯ “ {0, 1})))dom (𝑐 ∖ I )))
12740, 126mpbid 235 . . . 4 (𝜑Disj 𝑐 ∈ (𝑀 “ (𝐴 ∖ (♯ “ {0, 1})))dom (𝑐 ∖ I ))
128 simpr 488 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → (𝑀𝑥) = 𝑐)
1294ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → 𝐷𝑉)
13014ssrind 4162 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∩ (♯ “ {0, 1})) ⊆ (dom 𝑀 ∩ (♯ “ {0, 1})))
131130ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → (𝐴 ∩ (♯ “ {0, 1})) ⊆ (dom 𝑀 ∩ (♯ “ {0, 1})))
132 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1})))
133131, 132sseldd 3916 . . . . . . . . . . 11 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → 𝑥 ∈ (dom 𝑀 ∩ (♯ “ {0, 1})))
1345tocyc01 30810 . . . . . . . . . . 11 ((𝐷𝑉𝑥 ∈ (dom 𝑀 ∩ (♯ “ {0, 1}))) → (𝑀𝑥) = ( I ↾ 𝐷))
135129, 133, 134syl2anc 587 . . . . . . . . . 10 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → (𝑀𝑥) = ( I ↾ 𝐷))
136128, 135eqtr3d 2835 . . . . . . . . 9 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → 𝑐 = ( I ↾ 𝐷))
137136difeq1d 4049 . . . . . . . 8 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → (𝑐 ∖ I ) = (( I ↾ 𝐷) ∖ I ))
138137dmeqd 5738 . . . . . . 7 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → dom (𝑐 ∖ I ) = dom (( I ↾ 𝐷) ∖ I ))
139 resdifcom 5837 . . . . . . . . . 10 (( I ↾ 𝐷) ∖ I ) = (( I ∖ I ) ↾ 𝐷)
140 difid 4284 . . . . . . . . . . 11 ( I ∖ I ) = ∅
141140reseq1i 5814 . . . . . . . . . 10 (( I ∖ I ) ↾ 𝐷) = (∅ ↾ 𝐷)
142 0res 30367 . . . . . . . . . 10 (∅ ↾ 𝐷) = ∅
143139, 141, 1423eqtri 2825 . . . . . . . . 9 (( I ↾ 𝐷) ∖ I ) = ∅
144143dmeqi 5737 . . . . . . . 8 dom (( I ↾ 𝐷) ∖ I ) = dom ∅
145 dm0 5754 . . . . . . . 8 dom ∅ = ∅
146144, 145eqtri 2821 . . . . . . 7 dom (( I ↾ 𝐷) ∖ I ) = ∅
147138, 146eqtrdi 2849 . . . . . 6 ((((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) ∧ 𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))) ∧ (𝑀𝑥) = 𝑐) → dom (𝑐 ∖ I ) = ∅)
14841ffund 6491 . . . . . . 7 (𝜑 → Fun 𝑀)
149 fvelima 6706 . . . . . . 7 ((Fun 𝑀𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) → ∃𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))(𝑀𝑥) = 𝑐)
150148, 149sylan 583 . . . . . 6 ((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) → ∃𝑥 ∈ (𝐴 ∩ (♯ “ {0, 1}))(𝑀𝑥) = 𝑐)
151147, 150r19.29a 3248 . . . . 5 ((𝜑𝑐 ∈ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) → dom (𝑐 ∖ I ) = ∅)
152151disjxun0 30337 . . . 4 (𝜑 → (Disj 𝑐 ∈ ((𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1}))))dom (𝑐 ∖ I ) ↔ Disj 𝑐 ∈ (𝑀 “ (𝐴 ∖ (♯ “ {0, 1})))dom (𝑐 ∖ I )))
153127, 152mpbird 260 . . 3 (𝜑Disj 𝑐 ∈ ((𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1}))))dom (𝑐 ∖ I ))
154 uncom 4080 . . . . . 6 ((𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) = ((𝑀 “ (𝐴 ∩ (♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))))
155 imaundi 5975 . . . . . 6 (𝑀 “ ((𝐴 ∩ (♯ “ {0, 1})) ∪ (𝐴 ∖ (♯ “ {0, 1})))) = ((𝑀 “ (𝐴 ∩ (♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))))
156 inundif 4385 . . . . . . 7 ((𝐴 ∩ (♯ “ {0, 1})) ∪ (𝐴 ∖ (♯ “ {0, 1}))) = 𝐴
157156imaeq2i 5894 . . . . . 6 (𝑀 “ ((𝐴 ∩ (♯ “ {0, 1})) ∪ (𝐴 ∖ (♯ “ {0, 1})))) = (𝑀𝐴)
158154, 155, 1573eqtr2i 2827 . . . . 5 ((𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) = (𝑀𝐴)
159158a1i 11 . . . 4 (𝜑 → ((𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1})))) = (𝑀𝐴))
160159disjeq1d 5003 . . 3 (𝜑 → (Disj 𝑐 ∈ ((𝑀 “ (𝐴 ∖ (♯ “ {0, 1}))) ∪ (𝑀 “ (𝐴 ∩ (♯ “ {0, 1}))))dom (𝑐 ∖ I ) ↔ Disj 𝑐 ∈ (𝑀𝐴)dom (𝑐 ∖ I )))
161153, 160mpbid 235 . 2 (𝜑Disj 𝑐 ∈ (𝑀𝐴)dom (𝑐 ∖ I ))
1621, 2, 3, 8, 161symgcntz 30779 1 (𝜑 → (𝑀𝐴) ⊆ (𝑍‘(𝑀𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {cpr 4527  Disj wdisj 4995   class class class wbr 5030   I cid 5424  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  cima 5522  Rel wrel 5524  Fun wfun 6318  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   < clt 10664  ..^cfzo 13028  chash 13686  Word cword 13857  Basecbs 16475  Cntzccntz 18437  SymGrpcsymg 18487  toCycctocyc 30798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024  df-csh 14142  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-efmnd 18026  df-cntz 18439  df-symg 18488  df-tocyc 30799
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator