MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsb Structured version   Visualization version   GIF version

Theorem exsb 2365
Description: An equivalent expression for existence. One direction (exsbim 2001) needs fewer axioms. (Contributed by NM, 2-Feb-2005.) Avoid ax-13 2380. (Revised by Wolf Lammen, 16-Oct-2022.)
Assertion
Ref Expression
exsb (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem exsb
StepHypRef Expression
1 nfv 1913 . 2 𝑦𝜑
2 nfa1 2152 . 2 𝑥𝑥(𝑥 = 𝑦𝜑)
3 ax12v 2179 . . 3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
4 sp 2184 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
54com12 32 . . 3 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
63, 5impbid 212 . 2 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
71, 2, 6cbvexv1 2348 1 (∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator