MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu5a Structured version   Visualization version   GIF version

Theorem 2reu5a 3679
Description: Double restricted existential uniqueness in terms of restricted existence and restricted "at most one". (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2reu5a (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑) ∧ ∃*𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑)))

Proof of Theorem 2reu5a
StepHypRef Expression
1 reu5 3361 . 2 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑))
2 reu5 3361 . . . 4 (∃!𝑦𝐵 𝜑 ↔ (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑))
32rexbii 3181 . . 3 (∃𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑))
42rmobii 3331 . . 3 (∃*𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃*𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑))
53, 4anbi12i 627 . 2 ((∃𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑) ↔ (∃𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑) ∧ ∃*𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑)))
61, 5bitri 274 1 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑) ∧ ∃*𝑥𝐴 (∃𝑦𝐵 𝜑 ∧ ∃*𝑦𝐵 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wrex 3065  ∃!wreu 3066  ∃*wrmo 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-mo 2540  df-eu 2569  df-rex 3070  df-rmo 3071  df-reu 3072
This theorem is referenced by:  2reu1  3830
  Copyright terms: Public domain W3C validator