![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version |
Description: Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2586 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-reu 3096 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3095 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rmo 3097 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | anbi12i 620 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 1, 2, 5 | 3bitr4i 295 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ∃wex 1823 ∈ wcel 2106 ∃*wmo 2548 ∃!weu 2585 ∃wrex 3090 ∃!wreu 3091 ∃*wrmo 3092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-eu 2586 df-rex 3095 df-reu 3096 df-rmo 3097 |
This theorem is referenced by: reurex 3355 reurmo 3356 reu4 3611 reueq 3617 reusv1 5109 wereu 5351 wereu2 5352 fncnv 6207 moriotass 6912 supeu 8648 infeu 8690 resqreu 14400 sqrtneg 14415 sqreu 14507 catideu 16721 poslubd 17534 ismgmid 17650 mndideu 17690 evlseu 19912 frlmup4 20544 ply1divalg 24334 tglinethrueu 25990 foot 26070 mideu 26086 nbusgredgeu 26713 pjhtheu 28825 pjpreeq 28829 cnlnadjeui 29508 cvmliftlem14 31878 cvmlift2lem13 31896 cvmlift3 31909 nosupno 32438 nosupbday 32440 nosupbnd1 32449 nosupbnd2 32451 linethrueu 32852 phpreu 34002 poimirlem18 34037 poimirlem21 34040 2reu5a 42117 reuan 42120 2reurex 42124 2rexreu 42128 2reu1 42129 |
Copyright terms: Public domain | W3C validator |