MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu5 Structured version   Visualization version   GIF version

Theorem reu5 3390
Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
reu5 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))

Proof of Theorem reu5
StepHypRef Expression
1 df-eu 2572 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
2 df-reu 3389 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 df-rex 3077 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rmo 3388 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
53, 4anbi12i 627 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
61, 2, 53bitr4i 303 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1777  wcel 2108  ∃*wmo 2541  ∃!weu 2571  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-eu 2572  df-rex 3077  df-rmo 3388  df-reu 3389
This theorem is referenced by:  reurmo  3391  reurex  3392  cbvreuw  3418  reueq1  3426  reueq1f  3432  reu4  3753  reueq  3759  2reu5a  3766  2reurex  3782  2rexreu  3784  reuan  3918  2reu1  3919  reusv1  5415  wereu  5696  wereu2  5697  fncnv  6651  moriotass  7437  supeu  9523  infeu  9565  ttrcltr  9785  resqreu  15301  sqrtneg  15316  sqreu  15409  catideu  17733  poslubd  18483  ismgmid  18703  mndideu  18783  frlmup4  21844  evlseu  22130  ply1divalg  26197  2sqreulem1  27508  2sqreunnlem1  27511  nosupno  27766  nosupbday  27768  nosupbnd1  27777  nosupbnd2  27779  noinfno  27781  noinfbday  27783  noinfbnd1  27792  noinfbnd2  27794  noreceuw  28235  tglinethrueu  28665  foot  28748  mideu  28764  nbusgredgeu  29401  pjhtheu  31426  pjpreeq  31430  cnlnadjeui  32109  cvmliftlem14  35265  cvmlift2lem13  35283  cvmlift3  35296  r1peuqusdeg1  35611  linethrueu  36120  phpreu  37564  poimirlem18  37598  poimirlem21  37601  primrootsunit1  42054  addinvcom  42407  reutruALT  48538  lubeldm2  48636  glbeldm2  48637
  Copyright terms: Public domain W3C validator