![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version |
Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2564 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-reu 3378 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3072 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rmo 3377 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ∃*wmo 2533 ∃!weu 2563 ∃wrex 3071 ∃!wreu 3375 ∃*wrmo 3376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-eu 2564 df-rex 3072 df-rmo 3377 df-reu 3378 |
This theorem is referenced by: reurmo 3380 reurex 3381 cbvreuw 3407 reueq1 3416 reueq1f 3422 reu4 3728 reueq 3734 2reu5a 3741 2reurex 3757 2rexreu 3759 reuan 3891 2reu1 3892 reusv1 5396 wereu 5673 wereu2 5674 fncnv 6622 moriotass 7398 supeu 9449 infeu 9491 ttrcltr 9711 resqreu 15199 sqrtneg 15214 sqreu 15307 catideu 17619 poslubd 18366 ismgmid 18584 mndideu 18636 frlmup4 21356 evlseu 21646 ply1divalg 25655 2sqreulem1 26949 2sqreunnlem1 26952 nosupno 27206 nosupbday 27208 nosupbnd1 27217 nosupbnd2 27219 noinfno 27221 noinfbday 27223 noinfbnd1 27232 noinfbnd2 27234 noreceuw 27639 tglinethrueu 27890 foot 27973 mideu 27989 nbusgredgeu 28623 pjhtheu 30647 pjpreeq 30651 cnlnadjeui 31330 cvmliftlem14 34288 cvmlift2lem13 34306 cvmlift3 34319 linethrueu 35128 phpreu 36472 poimirlem18 36506 poimirlem21 36509 addinvcom 41304 reutruALT 47491 lubeldm2 47589 glbeldm2 47590 |
Copyright terms: Public domain | W3C validator |