![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version |
Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2572 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-reu 3389 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rmo 3388 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | anbi12i 627 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∃*wmo 2541 ∃!weu 2571 ∃wrex 3076 ∃!wreu 3386 ∃*wrmo 3387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2572 df-rex 3077 df-rmo 3388 df-reu 3389 |
This theorem is referenced by: reurmo 3391 reurex 3392 cbvreuw 3418 reueq1 3426 reueq1f 3432 reu4 3753 reueq 3759 2reu5a 3766 2reurex 3782 2rexreu 3784 reuan 3918 2reu1 3919 reusv1 5415 wereu 5696 wereu2 5697 fncnv 6651 moriotass 7437 supeu 9523 infeu 9565 ttrcltr 9785 resqreu 15301 sqrtneg 15316 sqreu 15409 catideu 17733 poslubd 18483 ismgmid 18703 mndideu 18783 frlmup4 21844 evlseu 22130 ply1divalg 26197 2sqreulem1 27508 2sqreunnlem1 27511 nosupno 27766 nosupbday 27768 nosupbnd1 27777 nosupbnd2 27779 noinfno 27781 noinfbday 27783 noinfbnd1 27792 noinfbnd2 27794 noreceuw 28235 tglinethrueu 28665 foot 28748 mideu 28764 nbusgredgeu 29401 pjhtheu 31426 pjpreeq 31430 cnlnadjeui 32109 cvmliftlem14 35265 cvmlift2lem13 35283 cvmlift3 35296 r1peuqusdeg1 35611 linethrueu 36120 phpreu 37564 poimirlem18 37598 poimirlem21 37601 primrootsunit1 42054 addinvcom 42407 reutruALT 48538 lubeldm2 48636 glbeldm2 48637 |
Copyright terms: Public domain | W3C validator |