| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | df-reu 3352 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rmo 3351 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2531 ∃!weu 2561 ∃wrex 3053 ∃!wreu 3349 ∃*wrmo 3350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 df-rex 3054 df-rmo 3351 df-reu 3352 |
| This theorem is referenced by: reurmo 3354 reurex 3355 cbvreuw 3379 reueq1 3385 reueq1f 3393 reu4 3699 reueq 3705 2reu5a 3712 2reurex 3728 2rexreu 3730 reuan 3856 2reu1 3857 reusv1 5347 wereu 5627 wereu2 5628 fncnv 6573 moriotass 7358 supeu 9381 infeu 9425 ttrcltr 9645 resqreu 15194 sqrtneg 15209 sqreu 15303 catideu 17612 poslubd 18348 ismgmid 18568 mndideu 18648 frlmup4 21686 evlseu 21966 ply1divalg 26019 2sqreulem1 27333 2sqreunnlem1 27336 nosupno 27591 nosupbday 27593 nosupbnd1 27602 nosupbnd2 27604 noinfno 27606 noinfbday 27608 noinfbnd1 27617 noinfbnd2 27619 noreceuw 28070 tglinethrueu 28542 foot 28625 mideu 28641 nbusgredgeu 29269 pjhtheu 31296 pjpreeq 31300 cnlnadjeui 31979 cvmliftlem14 35257 cvmlift2lem13 35275 cvmlift3 35288 r1peuqusdeg1 35603 linethrueu 36117 phpreu 37571 poimirlem18 37605 poimirlem21 37608 primrootsunit1 42058 addinvcom 42393 reutruALT 48766 lubeldm2 48917 glbeldm2 48918 upeu 49133 |
| Copyright terms: Public domain | W3C validator |