| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2563 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | df-reu 3357 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 3055 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rmo 3356 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2532 ∃!weu 2562 ∃wrex 3054 ∃!wreu 3354 ∃*wrmo 3355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2563 df-rex 3055 df-rmo 3356 df-reu 3357 |
| This theorem is referenced by: reurmo 3359 reurex 3360 cbvreuw 3384 reueq1 3391 reueq1f 3399 reu4 3705 reueq 3711 2reu5a 3718 2reurex 3734 2rexreu 3736 reuan 3862 2reu1 3863 reusv1 5355 wereu 5637 wereu2 5638 fncnv 6592 moriotass 7379 supeu 9412 infeu 9456 ttrcltr 9676 resqreu 15225 sqrtneg 15240 sqreu 15334 catideu 17643 poslubd 18379 ismgmid 18599 mndideu 18679 frlmup4 21717 evlseu 21997 ply1divalg 26050 2sqreulem1 27364 2sqreunnlem1 27367 nosupno 27622 nosupbday 27624 nosupbnd1 27633 nosupbnd2 27635 noinfno 27637 noinfbday 27639 noinfbnd1 27648 noinfbnd2 27650 noreceuw 28101 tglinethrueu 28573 foot 28656 mideu 28672 nbusgredgeu 29300 pjhtheu 31330 pjpreeq 31334 cnlnadjeui 32013 cvmliftlem14 35291 cvmlift2lem13 35309 cvmlift3 35322 r1peuqusdeg1 35637 linethrueu 36151 phpreu 37605 poimirlem18 37639 poimirlem21 37642 primrootsunit1 42092 addinvcom 42427 reutruALT 48797 lubeldm2 48948 glbeldm2 48949 upeu 49164 |
| Copyright terms: Public domain | W3C validator |