Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version |
Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2570 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-reu 3072 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3071 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rmo 3073 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | anbi12i 626 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1785 ∈ wcel 2109 ∃*wmo 2539 ∃!weu 2569 ∃wrex 3066 ∃!wreu 3067 ∃*wrmo 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-eu 2570 df-rex 3071 df-reu 3072 df-rmo 3073 |
This theorem is referenced by: reurex 3360 reurmo 3362 reu4 3669 reueq 3675 2reu5a 3682 2reurex 3698 2rexreu 3700 reuan 3833 2reu1 3834 reusv1 5323 wereu 5584 wereu2 5585 fncnv 6503 moriotass 7258 supeu 9174 infeu 9216 ttrcltr 9435 resqreu 14945 sqrtneg 14960 sqreu 15053 catideu 17365 poslubd 18112 ismgmid 18330 mndideu 18377 frlmup4 20989 evlseu 21274 ply1divalg 25283 2sqreulem1 26575 2sqreunnlem1 26578 tglinethrueu 26981 foot 27064 mideu 27080 nbusgredgeu 27714 pjhtheu 29735 pjpreeq 29739 cnlnadjeui 30418 cvmliftlem14 33238 cvmlift2lem13 33256 cvmlift3 33269 nosupno 33885 nosupbday 33887 nosupbnd1 33896 nosupbnd2 33898 noinfno 33900 noinfbday 33902 noinfbnd1 33911 noinfbnd2 33913 linethrueu 34437 phpreu 35740 poimirlem18 35774 poimirlem21 35777 addinvcom 40393 reutruALT 46104 lubeldm2 46202 glbeldm2 46203 |
Copyright terms: Public domain | W3C validator |