| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | df-reu 3355 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rmo 3354 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2531 ∃!weu 2561 ∃wrex 3053 ∃!wreu 3352 ∃*wrmo 3353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 df-rex 3054 df-rmo 3354 df-reu 3355 |
| This theorem is referenced by: reurmo 3357 reurex 3358 cbvreuw 3382 reueq1 3388 reueq1f 3396 reu4 3702 reueq 3708 2reu5a 3715 2reurex 3731 2rexreu 3733 reuan 3859 2reu1 3860 reusv1 5352 wereu 5634 wereu2 5635 fncnv 6589 moriotass 7376 supeu 9405 infeu 9449 ttrcltr 9669 resqreu 15218 sqrtneg 15233 sqreu 15327 catideu 17636 poslubd 18372 ismgmid 18592 mndideu 18672 frlmup4 21710 evlseu 21990 ply1divalg 26043 2sqreulem1 27357 2sqreunnlem1 27360 nosupno 27615 nosupbday 27617 nosupbnd1 27626 nosupbnd2 27628 noinfno 27630 noinfbday 27632 noinfbnd1 27641 noinfbnd2 27643 noreceuw 28094 tglinethrueu 28566 foot 28649 mideu 28665 nbusgredgeu 29293 pjhtheu 31323 pjpreeq 31327 cnlnadjeui 32006 cvmliftlem14 35284 cvmlift2lem13 35302 cvmlift3 35315 r1peuqusdeg1 35630 linethrueu 36144 phpreu 37598 poimirlem18 37632 poimirlem21 37635 primrootsunit1 42085 addinvcom 42420 reutruALT 48793 lubeldm2 48944 glbeldm2 48945 upeu 49160 |
| Copyright terms: Public domain | W3C validator |