![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version |
Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2567 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-reu 3379 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rmo 3378 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 ∃*wmo 2536 ∃!weu 2566 ∃wrex 3068 ∃!wreu 3376 ∃*wrmo 3377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2567 df-rex 3069 df-rmo 3378 df-reu 3379 |
This theorem is referenced by: reurmo 3381 reurex 3382 cbvreuw 3408 reueq1 3415 reueq1f 3422 reu4 3740 reueq 3746 2reu5a 3753 2reurex 3769 2rexreu 3771 reuan 3905 2reu1 3906 reusv1 5403 wereu 5685 wereu2 5686 fncnv 6641 moriotass 7420 supeu 9492 infeu 9534 ttrcltr 9754 resqreu 15288 sqrtneg 15303 sqreu 15396 catideu 17720 poslubd 18471 ismgmid 18691 mndideu 18771 frlmup4 21839 evlseu 22125 ply1divalg 26192 2sqreulem1 27505 2sqreunnlem1 27508 nosupno 27763 nosupbday 27765 nosupbnd1 27774 nosupbnd2 27776 noinfno 27778 noinfbday 27780 noinfbnd1 27789 noinfbnd2 27791 noreceuw 28232 tglinethrueu 28662 foot 28745 mideu 28761 nbusgredgeu 29398 pjhtheu 31423 pjpreeq 31427 cnlnadjeui 32106 cvmliftlem14 35282 cvmlift2lem13 35300 cvmlift3 35313 r1peuqusdeg1 35628 linethrueu 36138 phpreu 37591 poimirlem18 37625 poimirlem21 37628 primrootsunit1 42079 addinvcom 42438 reutruALT 48654 lubeldm2 48753 glbeldm2 48754 upeu 48817 |
Copyright terms: Public domain | W3C validator |