| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | df-reu 3352 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rmo 3351 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2531 ∃!weu 2561 ∃wrex 3053 ∃!wreu 3349 ∃*wrmo 3350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 df-rex 3054 df-rmo 3351 df-reu 3352 |
| This theorem is referenced by: reurmo 3354 reurex 3355 cbvreuw 3379 reueq1 3385 reueq1f 3393 reu4 3699 reueq 3705 2reu5a 3712 2reurex 3728 2rexreu 3730 reuan 3856 2reu1 3857 reusv1 5347 wereu 5627 wereu2 5628 fncnv 6573 moriotass 7358 supeu 9381 infeu 9425 ttrcltr 9645 resqreu 15194 sqrtneg 15209 sqreu 15303 catideu 17616 poslubd 18352 ismgmid 18574 mndideu 18654 frlmup4 21743 evlseu 22023 ply1divalg 26076 2sqreulem1 27390 2sqreunnlem1 27393 nosupno 27648 nosupbday 27650 nosupbnd1 27659 nosupbnd2 27661 noinfno 27663 noinfbday 27665 noinfbnd1 27674 noinfbnd2 27676 noreceuw 28134 tglinethrueu 28619 foot 28702 mideu 28718 nbusgredgeu 29346 pjhtheu 31373 pjpreeq 31377 cnlnadjeui 32056 cvmliftlem14 35277 cvmlift2lem13 35295 cvmlift3 35308 r1peuqusdeg1 35623 linethrueu 36137 phpreu 37591 poimirlem18 37625 poimirlem21 37628 primrootsunit1 42078 addinvcom 42413 reutruALT 48786 lubeldm2 48937 glbeldm2 48938 upeu 49153 |
| Copyright terms: Public domain | W3C validator |