![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version |
Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2564 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-reu 3378 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3072 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rmo 3377 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ∃*wmo 2533 ∃!weu 2563 ∃wrex 3071 ∃!wreu 3375 ∃*wrmo 3376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-eu 2564 df-rex 3072 df-rmo 3377 df-reu 3378 |
This theorem is referenced by: reurmo 3380 reurex 3381 cbvreuw 3407 reueq1 3416 reueq1f 3422 reu4 3727 reueq 3733 2reu5a 3740 2reurex 3756 2rexreu 3758 reuan 3890 2reu1 3891 reusv1 5395 wereu 5672 wereu2 5673 fncnv 6619 moriotass 7395 supeu 9446 infeu 9488 ttrcltr 9708 resqreu 15196 sqrtneg 15211 sqreu 15304 catideu 17616 poslubd 18363 ismgmid 18581 mndideu 18633 frlmup4 21348 evlseu 21638 ply1divalg 25647 2sqreulem1 26939 2sqreunnlem1 26942 nosupno 27196 nosupbday 27198 nosupbnd1 27207 nosupbnd2 27209 noinfno 27211 noinfbday 27213 noinfbnd1 27222 noinfbnd2 27224 noreceuw 27629 tglinethrueu 27880 foot 27963 mideu 27979 nbusgredgeu 28613 pjhtheu 30635 pjpreeq 30639 cnlnadjeui 31318 cvmliftlem14 34277 cvmlift2lem13 34295 cvmlift3 34308 linethrueu 35117 phpreu 36461 poimirlem18 36495 poimirlem21 36498 addinvcom 41301 reutruALT 47445 lubeldm2 47543 glbeldm2 47544 |
Copyright terms: Public domain | W3C validator |