Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version |
Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2567 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-reu 3305 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | df-rex 3072 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
4 | df-rmo 3304 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∃wex 1779 ∈ wcel 2104 ∃*wmo 2536 ∃!weu 2566 ∃wrex 3071 ∃!wreu 3301 ∃*wrmo 3302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-eu 2567 df-rex 3072 df-rmo 3304 df-reu 3305 |
This theorem is referenced by: reurex 3381 reurmo 3383 cbvreuw 3390 reu4 3671 reueq 3677 2reu5a 3684 2reurex 3700 2rexreu 3702 reuan 3834 2reu1 3835 reusv1 5329 wereu 5596 wereu2 5597 fncnv 6536 moriotass 7297 supeu 9261 infeu 9303 ttrcltr 9522 resqreu 15013 sqrtneg 15028 sqreu 15121 catideu 17433 poslubd 18180 ismgmid 18398 mndideu 18445 frlmup4 21057 evlseu 21342 ply1divalg 25351 2sqreulem1 26643 2sqreunnlem1 26646 tglinethrueu 27049 foot 27132 mideu 27148 nbusgredgeu 27782 pjhtheu 29805 pjpreeq 29809 cnlnadjeui 30488 cvmliftlem14 33308 cvmlift2lem13 33326 cvmlift3 33339 nosupno 33955 nosupbday 33957 nosupbnd1 33966 nosupbnd2 33968 noinfno 33970 noinfbday 33972 noinfbnd1 33981 noinfbnd2 33983 linethrueu 34507 phpreu 35809 poimirlem18 35843 poimirlem21 35846 addinvcom 40608 reutruALT 46396 lubeldm2 46494 glbeldm2 46495 |
Copyright terms: Public domain | W3C validator |