| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2564 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | df-reu 3347 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 3057 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rmo 3346 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∃*wmo 2533 ∃!weu 2563 ∃wrex 3056 ∃!wreu 3344 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2564 df-rex 3057 df-rmo 3346 df-reu 3347 |
| This theorem is referenced by: reurmo 3349 reurex 3350 cbvreuw 3372 reueq1 3378 reueq1f 3386 reu4 3685 reueq 3691 2reu5a 3698 2reurex 3714 2rexreu 3716 reuan 3842 2reu1 3843 reusv1 5333 wereu 5610 wereu2 5611 fncnv 6554 moriotass 7335 supeu 9338 infeu 9382 ttrcltr 9606 resqreu 15159 sqrtneg 15174 sqreu 15268 catideu 17581 poslubd 18317 ismgmid 18573 mndideu 18653 frlmup4 21738 evlseu 22018 ply1divalg 26070 2sqreulem1 27384 2sqreunnlem1 27387 nosupno 27642 nosupbday 27644 nosupbnd1 27653 nosupbnd2 27655 noinfno 27657 noinfbday 27659 noinfbnd1 27668 noinfbnd2 27670 noreceuw 28130 tglinethrueu 28617 foot 28700 mideu 28716 nbusgredgeu 29344 pjhtheu 31374 pjpreeq 31378 cnlnadjeui 32057 cvmliftlem14 35341 cvmlift2lem13 35359 cvmlift3 35372 r1peuqusdeg1 35687 linethrueu 36198 phpreu 37652 poimirlem18 37686 poimirlem21 37689 primrootsunit1 42138 addinvcom 42473 reutruALT 48844 lubeldm2 48995 glbeldm2 48996 upeu 49211 |
| Copyright terms: Public domain | W3C validator |