| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2568 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | df-reu 3360 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 3061 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rmo 3359 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃*wmo 2537 ∃!weu 2567 ∃wrex 3060 ∃!wreu 3357 ∃*wrmo 3358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2568 df-rex 3061 df-rmo 3359 df-reu 3360 |
| This theorem is referenced by: reurmo 3362 reurex 3363 cbvreuw 3389 reueq1 3396 reueq1f 3404 reu4 3714 reueq 3720 2reu5a 3727 2reurex 3743 2rexreu 3745 reuan 3871 2reu1 3872 reusv1 5367 wereu 5650 wereu2 5651 fncnv 6609 moriotass 7394 supeu 9466 infeu 9510 ttrcltr 9730 resqreu 15271 sqrtneg 15286 sqreu 15379 catideu 17687 poslubd 18423 ismgmid 18643 mndideu 18723 frlmup4 21761 evlseu 22041 ply1divalg 26095 2sqreulem1 27409 2sqreunnlem1 27412 nosupno 27667 nosupbday 27669 nosupbnd1 27678 nosupbnd2 27680 noinfno 27682 noinfbday 27684 noinfbnd1 27693 noinfbnd2 27695 noreceuw 28146 tglinethrueu 28618 foot 28701 mideu 28717 nbusgredgeu 29345 pjhtheu 31375 pjpreeq 31379 cnlnadjeui 32058 cvmliftlem14 35319 cvmlift2lem13 35337 cvmlift3 35350 r1peuqusdeg1 35665 linethrueu 36174 phpreu 37628 poimirlem18 37662 poimirlem21 37665 primrootsunit1 42110 addinvcom 42474 reutruALT 48784 lubeldm2 48930 glbeldm2 48931 upeu 49106 |
| Copyright terms: Public domain | W3C validator |