| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reu5 | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| reu5 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2562 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 2 | df-reu 3344 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 4 | df-rmo 3343 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 3, 4 | anbi12i 628 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2531 ∃!weu 2561 ∃wrex 3053 ∃!wreu 3341 ∃*wrmo 3342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-eu 2562 df-rex 3054 df-rmo 3343 df-reu 3344 |
| This theorem is referenced by: reurmo 3346 reurex 3347 cbvreuw 3371 reueq1 3377 reueq1f 3385 reu4 3691 reueq 3697 2reu5a 3704 2reurex 3720 2rexreu 3722 reuan 3848 2reu1 3849 reusv1 5336 wereu 5615 wereu2 5616 fncnv 6555 moriotass 7338 supeu 9344 infeu 9388 ttrcltr 9612 resqreu 15159 sqrtneg 15174 sqreu 15268 catideu 17581 poslubd 18317 ismgmid 18539 mndideu 18619 frlmup4 21708 evlseu 21988 ply1divalg 26041 2sqreulem1 27355 2sqreunnlem1 27358 nosupno 27613 nosupbday 27615 nosupbnd1 27624 nosupbnd2 27626 noinfno 27628 noinfbday 27630 noinfbnd1 27639 noinfbnd2 27641 noreceuw 28099 tglinethrueu 28584 foot 28667 mideu 28683 nbusgredgeu 29311 pjhtheu 31338 pjpreeq 31342 cnlnadjeui 32021 cvmliftlem14 35270 cvmlift2lem13 35288 cvmlift3 35301 r1peuqusdeg1 35616 linethrueu 36130 phpreu 37584 poimirlem18 37618 poimirlem21 37621 primrootsunit1 42070 addinvcom 42405 reutruALT 48789 lubeldm2 48940 glbeldm2 48941 upeu 49156 |
| Copyright terms: Public domain | W3C validator |