MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu5 Structured version   Visualization version   GIF version

Theorem reu5 3354
Description: Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
reu5 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))

Proof of Theorem reu5
StepHypRef Expression
1 df-eu 2586 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
2 df-reu 3096 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 df-rex 3095 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-rmo 3097 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
53, 4anbi12i 620 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃*𝑥(𝑥𝐴𝜑)))
61, 2, 53bitr4i 295 1 (∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  wex 1823  wcel 2106  ∃*wmo 2548  ∃!weu 2585  wrex 3090  ∃!wreu 3091  ∃*wrmo 3092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-eu 2586  df-rex 3095  df-reu 3096  df-rmo 3097
This theorem is referenced by:  reurex  3355  reurmo  3356  reu4  3611  reueq  3617  reusv1  5109  wereu  5351  wereu2  5352  fncnv  6207  moriotass  6912  supeu  8648  infeu  8690  resqreu  14400  sqrtneg  14415  sqreu  14507  catideu  16721  poslubd  17534  ismgmid  17650  mndideu  17690  evlseu  19912  frlmup4  20544  ply1divalg  24334  tglinethrueu  25990  foot  26070  mideu  26086  nbusgredgeu  26713  pjhtheu  28825  pjpreeq  28829  cnlnadjeui  29508  cvmliftlem14  31878  cvmlift2lem13  31896  cvmlift3  31909  nosupno  32438  nosupbday  32440  nosupbnd1  32449  nosupbnd2  32451  linethrueu  32852  phpreu  34002  poimirlem18  34037  poimirlem21  34040  2reu5a  42117  reuan  42120  2reurex  42124  2rexreu  42128  2reu1  42129
  Copyright terms: Public domain W3C validator