|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > reuimrmo | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness implies restricted "at most one" through implication, analogous to euimmo 2615. (Contributed by Alexander van der Vekens, 25-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| reuimrmo | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃!𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reurmo 3382 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜓) | |
| 2 | rmoim 3745 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 3 | 1, 2 | syl5 34 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃!𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wral 3060 ∃!wreu 3377 ∃*wrmo 3378 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2539 df-eu 2568 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 | 
| This theorem is referenced by: 2reurmo 3764 | 
| Copyright terms: Public domain | W3C validator |