Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reuimrmo | Structured version Visualization version GIF version |
Description: Restricted uniqueness implies restricted "at most one" through implication, analogous to euimmo 2618. (Contributed by Alexander van der Vekens, 25-Jun-2017.) |
Ref | Expression |
---|---|
reuimrmo | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃!𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurmo 3364 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜓) | |
2 | rmoim 3675 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) | |
3 | 1, 2 | syl5 34 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃!𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wral 3064 ∃!wreu 3066 ∃*wrmo 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2540 df-eu 2569 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 |
This theorem is referenced by: 2reurmo 3694 |
Copyright terms: Public domain | W3C validator |