| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reuimrmo | Structured version Visualization version GIF version | ||
| Description: Restricted uniqueness implies restricted "at most one" through implication, analogous to euimmo 2616. (Contributed by Alexander van der Vekens, 25-Jun-2017.) |
| Ref | Expression |
|---|---|
| reuimrmo | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃!𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurmo 3367 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜓) | |
| 2 | rmoim 3728 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 3 | 1, 2 | syl5 34 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∃!𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wral 3052 ∃!wreu 3362 ∃*wrmo 3363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2540 df-eu 2569 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 |
| This theorem is referenced by: 2reurmo 3747 |
| Copyright terms: Public domain | W3C validator |