![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmobii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted at-most-one quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rmobii | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | rmobiia 3384 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 ∃*wrmo 3377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 df-rmo 3378 |
This theorem is referenced by: 2reu5a 3753 reuxfrd 3757 brdom7disj 10569 2sqreulem4 27513 nomaxmo 27758 reuxfrdf 32519 cvmlift2lem13 35300 ineccnvmo 38339 dfeldisj5 38703 lubeldm2 48753 glbeldm2 48754 |
Copyright terms: Public domain | W3C validator |