MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobii Structured version   Visualization version   GIF version

Theorem rmobii 3355
Description: Formula-building rule for restricted at-most-one quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobii.1 (𝜑𝜓)
Assertion
Ref Expression
rmobii (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)

Proof of Theorem rmobii
StepHypRef Expression
1 rmobii.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝑥𝐴 → (𝜑𝜓))
32rmobiia 3353 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  ∃*wrmo 3346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2537  df-rmo 3347
This theorem is referenced by:  2reu5a  3699  reuxfrd  3703  brdom7disj  10433  2sqreulem4  27412  nomaxmo  27657  reuxfrdf  32491  cvmlift2lem13  35431  ineccnvmo  38462  dfeldisj5  38892  lubeldm2  49117  glbeldm2  49118
  Copyright terms: Public domain W3C validator