MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobii Structured version   Visualization version   GIF version

Theorem rmobii 3396
Description: Formula-building rule for restricted at-most-one quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobii.1 (𝜑𝜓)
Assertion
Ref Expression
rmobii (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)

Proof of Theorem rmobii
StepHypRef Expression
1 rmobii.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝑥𝐴 → (𝜑𝜓))
32rmobiia 3394 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-rmo 3388
This theorem is referenced by:  2reu5a  3766  reuxfrd  3770  brdom7disj  10600  2sqreulem4  27516  nomaxmo  27761  reuxfrdf  32519  cvmlift2lem13  35283  ineccnvmo  38313  dfeldisj5  38677  lubeldm2  48636  glbeldm2  48637
  Copyright terms: Public domain W3C validator