Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmobii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rmobii | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | rmobiia 3307 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2110 ∃*wrmo 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-mo 2539 df-rmo 3069 |
This theorem is referenced by: 2reu5a 3657 reuxfrd 3661 brdom7disj 10145 2sqreulem4 26335 reuxfrdf 30558 cvmlift2lem13 32990 nomaxmo 33638 ineccnvmo 36226 dfeldisj5 36569 lubeldm2 45923 glbeldm2 45924 |
Copyright terms: Public domain | W3C validator |