Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmobii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rmobii | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | rmobiia 3321 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 ∃*wrmo 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 df-rmo 3071 |
This theorem is referenced by: 2reu5a 3674 reuxfrd 3678 brdom7disj 10218 2sqreulem4 26507 reuxfrdf 30740 cvmlift2lem13 33177 nomaxmo 33828 ineccnvmo 36416 dfeldisj5 36759 lubeldm2 46138 glbeldm2 46139 |
Copyright terms: Public domain | W3C validator |