Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinbtwnle Structured version   Visualization version   GIF version

Theorem colinbtwnle 36079
Description: Given three colinear points 𝐴, 𝐵, and 𝐶, 𝐵 falls in the middle iff the two segments to 𝐵 are no longer than 𝐴𝐶. Theorem 5.12 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinbtwnle ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))))

Proof of Theorem colinbtwnle
StepHypRef Expression
1 btwnsegle 36078 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩))
2 3anrev 1100 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
3 btwnsegle 36078 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
42, 3sylan2b 594 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
5 3ancoma 1097 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
6 btwncom 35975 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
75, 6sylan2b 594 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
8 simpl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
9 simpr2 1196 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
10 simpr3 1197 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
118, 9, 10cgrrflx2d 35945 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩)
12 simpr1 1195 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
138, 12, 10cgrrflx2d 35945 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩)
14 seglecgr12 36072 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)))
158, 9, 10, 12, 10, 10, 9, 10, 12, 14syl333anc 1404 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)))
1611, 13, 15mp2and 699 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
174, 7, 163imtr4d 294 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))
181, 17jcad 512 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
1918adantr 480 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
20 brcolinear 36020 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
21 simprl 770 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐴 Btwn ⟨𝐵, 𝐶⟩)
228, 12, 9, 10, 21btwncomand 35976 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐴 Btwn ⟨𝐶, 𝐵⟩)
2316biimpa 476 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)
2423adantrl 716 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)
25 btwncom 35975 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐶, 𝐵⟩))
26 3anrot 1099 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
27 btwnsegle 36078 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐶, 𝐵⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
2826, 27sylan2br 595 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐶, 𝐵⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
2925, 28sylbid 240 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
3029imp 406 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩)
3130adantrr 717 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩)
32 segleantisym 36076 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
338, 10, 9, 10, 12, 32syl122anc 1381 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
3433adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
3524, 31, 34mp2and 699 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩)
368, 10, 9, 12, 22, 35endofsegidand 36047 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐵 = 𝐴)
37 btwntriv1 35977 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 Btwn ⟨𝐴, 𝐶⟩)
38373adant3r2 1184 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 Btwn ⟨𝐴, 𝐶⟩)
39 breq1 5105 . . . . . . . . . . . 12 (𝐵 = 𝐴 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐴, 𝐶⟩))
4038, 39syl5ibrcom 247 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 = 𝐴𝐵 Btwn ⟨𝐴, 𝐶⟩))
4140adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → (𝐵 = 𝐴𝐵 Btwn ⟨𝐴, 𝐶⟩))
4236, 41mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
4342expr 456 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4443adantld 490 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4544ex 412 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
467biimprd 248 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4746a1dd 50 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
48 simprl 770 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐶 Btwn ⟨𝐴, 𝐵⟩)
49 simprr 772 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)
50 3ancomb 1098 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
51 btwnsegle 36078 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩))
5250, 51sylan2b 594 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩))
5352imp 406 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩)
5453adantrr 717 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩)
55 segleantisym 36076 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
568, 12, 9, 12, 10, 55syl122anc 1381 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
5756adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
5849, 54, 57mp2and 699 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩)
598, 12, 9, 10, 48, 58endofsegidand 36047 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐵 = 𝐶)
60 btwntriv2 35973 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 Btwn ⟨𝐴, 𝐶⟩)
61603adant3r2 1184 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 Btwn ⟨𝐴, 𝐶⟩)
62 breq1 5105 . . . . . . . . . . . 12 (𝐵 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐶⟩))
6361, 62syl5ibrcom 247 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 = 𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩))
6463adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → (𝐵 = 𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩))
6559, 64mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
6665expr 456 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
6766adantrd 491 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
6867ex 412 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
6945, 47, 683jaod 1431 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
7020, 69sylbid 240 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
7170imp 406 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
7219, 71impbid 212 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
7372ex 412 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  cop 4591   class class class wbr 5102  cfv 6499  cn 12162  𝔼cee 28791   Btwn cbtwn 28792  Cgrccgr 28793   Colinear ccolin 35998   Seg csegle 36067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-ee 28794  df-btwn 28795  df-cgr 28796  df-ofs 35944  df-colinear 36000  df-ifs 36001  df-cgr3 36002  df-segle 36068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator