Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinbtwnle Structured version   Visualization version   GIF version

Theorem colinbtwnle 33579
Description: Given three colinear points 𝐴, 𝐵, and 𝐶, 𝐵 falls in the middle iff the two segments to 𝐵 are no longer than 𝐴𝐶. Theorem 5.12 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinbtwnle ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))))

Proof of Theorem colinbtwnle
StepHypRef Expression
1 btwnsegle 33578 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩))
2 3anrev 1097 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
3 btwnsegle 33578 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
42, 3sylan2b 595 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
5 3ancoma 1094 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
6 btwncom 33475 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
75, 6sylan2b 595 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
8 simpl 485 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
9 simpr2 1191 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
10 simpr3 1192 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
118, 9, 10cgrrflx2d 33445 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩)
12 simpr1 1190 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
138, 12, 10cgrrflx2d 33445 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩)
14 seglecgr12 33572 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)))
158, 9, 10, 12, 10, 10, 9, 10, 12, 14syl333anc 1398 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)))
1611, 13, 15mp2and 697 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
174, 7, 163imtr4d 296 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))
181, 17jcad 515 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
1918adantr 483 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
20 brcolinear 33520 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
21 simprl 769 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐴 Btwn ⟨𝐵, 𝐶⟩)
228, 12, 9, 10, 21btwncomand 33476 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐴 Btwn ⟨𝐶, 𝐵⟩)
2316biimpa 479 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)
2423adantrl 714 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)
25 btwncom 33475 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐶, 𝐵⟩))
26 3anrot 1096 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
27 btwnsegle 33578 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐶, 𝐵⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
2826, 27sylan2br 596 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐶, 𝐵⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
2925, 28sylbid 242 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
3029imp 409 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩)
3130adantrr 715 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩)
32 segleantisym 33576 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
338, 10, 9, 10, 12, 32syl122anc 1375 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
3433adantr 483 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
3524, 31, 34mp2and 697 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩)
368, 10, 9, 12, 22, 35endofsegidand 33547 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐵 = 𝐴)
37 btwntriv1 33477 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 Btwn ⟨𝐴, 𝐶⟩)
38373adant3r2 1179 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 Btwn ⟨𝐴, 𝐶⟩)
39 breq1 5069 . . . . . . . . . . . 12 (𝐵 = 𝐴 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐴, 𝐶⟩))
4038, 39syl5ibrcom 249 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 = 𝐴𝐵 Btwn ⟨𝐴, 𝐶⟩))
4140adantr 483 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → (𝐵 = 𝐴𝐵 Btwn ⟨𝐴, 𝐶⟩))
4236, 41mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
4342expr 459 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4443adantld 493 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4544ex 415 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
467biimprd 250 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4746a1dd 50 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
48 simprl 769 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐶 Btwn ⟨𝐴, 𝐵⟩)
49 simprr 771 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)
50 3ancomb 1095 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
51 btwnsegle 33578 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩))
5250, 51sylan2b 595 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩))
5352imp 409 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩)
5453adantrr 715 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩)
55 segleantisym 33576 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
568, 12, 9, 12, 10, 55syl122anc 1375 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
5756adantr 483 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
5849, 54, 57mp2and 697 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩)
598, 12, 9, 10, 48, 58endofsegidand 33547 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐵 = 𝐶)
60 btwntriv2 33473 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 Btwn ⟨𝐴, 𝐶⟩)
61603adant3r2 1179 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 Btwn ⟨𝐴, 𝐶⟩)
62 breq1 5069 . . . . . . . . . . . 12 (𝐵 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐶⟩))
6361, 62syl5ibrcom 249 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 = 𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩))
6463adantr 483 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → (𝐵 = 𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩))
6559, 64mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
6665expr 459 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
6766adantrd 494 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
6867ex 415 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
6945, 47, 683jaod 1424 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
7020, 69sylbid 242 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
7170imp 409 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
7219, 71impbid 214 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
7372ex 415 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  cop 4573   class class class wbr 5066  cfv 6355  cn 11638  𝔼cee 26674   Btwn cbtwn 26675  Cgrccgr 26676   Colinear ccolin 33498   Seg csegle 33567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-ee 26677  df-btwn 26678  df-cgr 26679  df-ofs 33444  df-colinear 33500  df-ifs 33501  df-cgr3 33502  df-segle 33568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator