Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  colinbtwnle Structured version   Visualization version   GIF version

Theorem colinbtwnle 34004
Description: Given three colinear points 𝐴, 𝐵, and 𝐶, 𝐵 falls in the middle iff the two segments to 𝐵 are no longer than 𝐴𝐶. Theorem 5.12 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
colinbtwnle ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))))

Proof of Theorem colinbtwnle
StepHypRef Expression
1 btwnsegle 34003 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩))
2 3anrev 1098 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
3 btwnsegle 34003 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
42, 3sylan2b 596 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
5 3ancoma 1095 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
6 btwncom 33900 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
75, 6sylan2b 596 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐵 Btwn ⟨𝐶, 𝐴⟩))
8 simpl 486 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
9 simpr2 1192 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
10 simpr3 1193 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
118, 9, 10cgrrflx2d 33870 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩)
12 simpr1 1191 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
138, 12, 10cgrrflx2d 33870 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩)
14 seglecgr12 33997 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)))
158, 9, 10, 12, 10, 10, 9, 10, 12, 14syl333anc 1399 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐶, 𝐵⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐶, 𝐴⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)))
1611, 13, 15mp2and 698 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ ↔ ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩))
174, 7, 163imtr4d 297 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))
181, 17jcad 516 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
1918adantr 484 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
20 brcolinear 33945 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩)))
21 simprl 770 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐴 Btwn ⟨𝐵, 𝐶⟩)
228, 12, 9, 10, 21btwncomand 33901 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐴 Btwn ⟨𝐶, 𝐵⟩)
2316biimpa 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)
2423adantrl 715 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩)
25 btwncom 33900 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐶, 𝐵⟩))
26 3anrot 1097 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
27 btwnsegle 34003 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐶, 𝐵⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
2826, 27sylan2br 597 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐶, 𝐵⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
2925, 28sylbid 243 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩))
3029imp 410 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩)
3130adantrr 716 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩)
32 segleantisym 34001 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
338, 10, 9, 10, 12, 32syl122anc 1376 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
3433adantr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ((⟨𝐶, 𝐵⟩ Seg𝐶, 𝐴⟩ ∧ ⟨𝐶, 𝐴⟩ Seg𝐶, 𝐵⟩) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩))
3524, 31, 34mp2and 698 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐶, 𝐵⟩Cgr⟨𝐶, 𝐴⟩)
368, 10, 9, 12, 22, 35endofsegidand 33972 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐵 = 𝐴)
37 btwntriv1 33902 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐴 Btwn ⟨𝐴, 𝐶⟩)
38373adant3r2 1180 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 Btwn ⟨𝐴, 𝐶⟩)
39 breq1 5039 . . . . . . . . . . . 12 (𝐵 = 𝐴 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐴 Btwn ⟨𝐴, 𝐶⟩))
4038, 39syl5ibrcom 250 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 = 𝐴𝐵 Btwn ⟨𝐴, 𝐶⟩))
4140adantr 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → (𝐵 = 𝐴𝐵 Btwn ⟨𝐴, 𝐶⟩))
4236, 41mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐴 Btwn ⟨𝐵, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
4342expr 460 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → (⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4443adantld 494 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Btwn ⟨𝐵, 𝐶⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4544ex 416 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn ⟨𝐵, 𝐶⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
467biimprd 251 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
4746a1dd 50 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐶, 𝐴⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
48 simprl 770 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐶 Btwn ⟨𝐴, 𝐵⟩)
49 simprr 772 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)
50 3ancomb 1096 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ↔ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
51 btwnsegle 34003 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩))
5250, 51sylan2b 596 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩))
5352imp 410 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩)
5453adantrr 716 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩)
55 segleantisym 34001 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
568, 12, 9, 12, 10, 55syl122anc 1376 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
5756adantr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩ Seg𝐴, 𝐵⟩) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩))
5849, 54, 57mp2and 698 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐴, 𝐶⟩)
598, 12, 9, 10, 48, 58endofsegidand 33972 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐵 = 𝐶)
60 btwntriv2 33898 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) → 𝐶 Btwn ⟨𝐴, 𝐶⟩)
61603adant3r2 1180 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 Btwn ⟨𝐴, 𝐶⟩)
62 breq1 5039 . . . . . . . . . . . 12 (𝐵 = 𝐶 → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ 𝐶 Btwn ⟨𝐴, 𝐶⟩))
6361, 62syl5ibrcom 250 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 = 𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩))
6463adantr 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → (𝐵 = 𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩))
6559, 64mpd 15 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝐶 Btwn ⟨𝐴, 𝐵⟩ ∧ ⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
6665expr 460 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
6766adantrd 495 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
6867ex 416 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
6945, 47, 683jaod 1425 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝐵, 𝐶⟩ ∨ 𝐵 Btwn ⟨𝐶, 𝐴⟩ ∨ 𝐶 Btwn ⟨𝐴, 𝐵⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
7020, 69sylbid 243 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)))
7170imp 410 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → ((⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩) → 𝐵 Btwn ⟨𝐴, 𝐶⟩))
7219, 71impbid 215 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴 Colinear ⟨𝐵, 𝐶⟩) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩)))
7372ex 416 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ↔ (⟨𝐴, 𝐵⟩ Seg𝐴, 𝐶⟩ ∧ ⟨𝐵, 𝐶⟩ Seg𝐴, 𝐶⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  cop 4531   class class class wbr 5036  cfv 6340  cn 11687  𝔼cee 26795   Btwn cbtwn 26796  Cgrccgr 26797   Colinear ccolin 33923   Seg csegle 33992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-ico 12798  df-icc 12799  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-hash 13754  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-clim 14906  df-sum 15104  df-ee 26798  df-btwn 26799  df-cgr 26800  df-ofs 33869  df-colinear 33925  df-ifs 33926  df-cgr3 33927  df-segle 33993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator