MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlks2onsym Structured version   Visualization version   GIF version

Theorem wwlks2onsym 29479
Description: There is a walk of length 2 from one vertex to another vertex iff there is a walk of length 2 from the other vertex to the first vertex. (Contributed by AV, 7-Jan-2022.)
Hypothesis
Ref Expression
elwwlks2on.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlks2onsym ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴)))

Proof of Theorem wwlks2onsym
StepHypRef Expression
1 elwwlks2on.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2730 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2umgrwwlks2on 29478 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))))
4 3anrev 1099 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ (𝐶𝑉𝐵𝑉𝐴𝑉))
51, 2umgrwwlks2on 29478 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝐶𝑉𝐵𝑉𝐴𝑉)) → (⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴) ↔ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺))))
64, 5sylan2b 592 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴) ↔ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺))))
7 prcom 4735 . . . . 5 {𝐶, 𝐵} = {𝐵, 𝐶}
87eleq1i 2822 . . . 4 ({𝐶, 𝐵} ∈ (Edg‘𝐺) ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
9 prcom 4735 . . . . 5 {𝐵, 𝐴} = {𝐴, 𝐵}
109eleq1i 2822 . . . 4 ({𝐵, 𝐴} ∈ (Edg‘𝐺) ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
118, 10anbi12ci 626 . . 3 (({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺)) ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)))
126, 11bitr2di 287 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)) ↔ ⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴)))
133, 12bitrd 278 1 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  {cpr 4629  cfv 6542  (class class class)co 7411  2c2 12271  ⟨“cs3 14797  Vtxcvtx 28523  Edgcedg 28574  UMGraphcumgr 28608   WWalksNOn cwwlksnon 29348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-ac 10113  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-concat 14525  df-s1 14550  df-s2 14803  df-s3 14804  df-edg 28575  df-uhgr 28585  df-upgr 28609  df-umgr 28610  df-wlks 29123  df-wwlks 29351  df-wwlksn 29352  df-wwlksnon 29353
This theorem is referenced by:  frgr2wwlkeqm  29851
  Copyright terms: Public domain W3C validator