![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlks2onsym | Structured version Visualization version GIF version |
Description: There is a walk of length 2 from one vertex to another vertex iff there is a walk of length 2 from the other vertex to the first vertex. (Contributed by AV, 7-Jan-2022.) |
Ref | Expression |
---|---|
elwwlks2on.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlks2onsym | ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elwwlks2on.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | eqid 2777 | . . 3 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
3 | 1, 2 | umgrwwlks2on 27337 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)))) |
4 | 3anrev 1089 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) | |
5 | 1, 2 | umgrwwlks2on 27337 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐶 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉)) → (〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴) ↔ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺)))) |
6 | 4, 5 | sylan2b 587 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴) ↔ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺)))) |
7 | prcom 4498 | . . . . 5 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
8 | 7 | eleq1i 2849 | . . . 4 ⊢ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺)) |
9 | prcom 4498 | . . . . 5 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
10 | 9 | eleq1i 2849 | . . . 4 ⊢ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺)) |
11 | 8, 10 | anbi12ci 621 | . . 3 ⊢ (({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺)) ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) |
12 | 6, 11 | syl6rbb 280 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)) ↔ 〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴))) |
13 | 3, 12 | bitrd 271 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ 〈“𝐶𝐵𝐴”〉 ∈ (𝐶(2 WWalksNOn 𝐺)𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 {cpr 4399 ‘cfv 6135 (class class class)co 6922 2c2 11430 〈“cs3 13993 Vtxcvtx 26344 Edgcedg 26395 UMGraphcumgr 26429 WWalksNOn cwwlksnon 27176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-ac2 9620 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ifp 1047 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-card 9098 df-ac 9272 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-xnn0 11715 df-z 11729 df-uz 11993 df-fz 12644 df-fzo 12785 df-hash 13436 df-word 13600 df-concat 13661 df-s1 13686 df-s2 13999 df-s3 14000 df-edg 26396 df-uhgr 26406 df-upgr 26430 df-umgr 26431 df-wlks 26947 df-wwlks 27179 df-wwlksn 27180 df-wwlksnon 27181 |
This theorem is referenced by: frgr2wwlkeqm 27739 |
Copyright terms: Public domain | W3C validator |