MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlks2onsym Structured version   Visualization version   GIF version

Theorem wwlks2onsym 29861
Description: There is a walk of length 2 from one vertex to another vertex iff there is a walk of length 2 from the other vertex to the first vertex. (Contributed by AV, 7-Jan-2022.)
Hypothesis
Ref Expression
elwwlks2on.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wwlks2onsym ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴)))

Proof of Theorem wwlks2onsym
StepHypRef Expression
1 elwwlks2on.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2729 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
31, 2umgrwwlks2on 29860 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))))
4 3anrev 1100 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) ↔ (𝐶𝑉𝐵𝑉𝐴𝑉))
51, 2umgrwwlks2on 29860 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝐶𝑉𝐵𝑉𝐴𝑉)) → (⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴) ↔ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺))))
64, 5sylan2b 594 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴) ↔ ({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺))))
7 prcom 4692 . . . . 5 {𝐶, 𝐵} = {𝐵, 𝐶}
87eleq1i 2819 . . . 4 ({𝐶, 𝐵} ∈ (Edg‘𝐺) ↔ {𝐵, 𝐶} ∈ (Edg‘𝐺))
9 prcom 4692 . . . . 5 {𝐵, 𝐴} = {𝐴, 𝐵}
109eleq1i 2819 . . . 4 ({𝐵, 𝐴} ∈ (Edg‘𝐺) ↔ {𝐴, 𝐵} ∈ (Edg‘𝐺))
118, 10anbi12ci 629 . . 3 (({𝐶, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐴} ∈ (Edg‘𝐺)) ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)))
126, 11bitr2di 288 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)) ↔ ⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴)))
133, 12bitrd 279 1 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (⟨“𝐴𝐵𝐶”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ ⟨“𝐶𝐵𝐴”⟩ ∈ (𝐶(2 WWalksNOn 𝐺)𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cpr 4587  cfv 6499  (class class class)co 7369  2c2 12217  ⟨“cs3 14784  Vtxcvtx 28899  Edgcedg 28950  UMGraphcumgr 28984   WWalksNOn cwwlksnon 29730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-edg 28951  df-uhgr 28961  df-upgr 28985  df-umgr 28986  df-wlks 29503  df-wwlks 29733  df-wwlksn 29734  df-wwlksnon 29735
This theorem is referenced by:  frgr2wwlkeqm  30233
  Copyright terms: Public domain W3C validator