Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcan Structured version   Visualization version   GIF version

Theorem nnmcan 8247
 Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmcan (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem nnmcan
StepHypRef Expression
1 3anrot 1097 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ (𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω))
2 nnmword 8246 . . . . 5 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 ↔ (𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶)))
31, 2sylanb 584 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 ↔ (𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶)))
4 3anrev 1098 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ (𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω))
5 nnmword 8246 . . . . 5 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 ↔ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
64, 5sylanb 584 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 ↔ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
73, 6anbi12d 633 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐵𝐶𝐶𝐵) ↔ ((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵))))
87bicomd 226 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)) ↔ (𝐵𝐶𝐶𝐵)))
9 eqss 3957 . 2 ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
10 eqss 3957 . 2 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
118, 9, 103bitr4g 317 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ⊆ wss 3908  ∅c0 4265  (class class class)co 7140  ωcom 7565   ·o comu 8087 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-oadd 8093  df-omul 8094 This theorem is referenced by:  mulcanpi  10311
 Copyright terms: Public domain W3C validator