MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcan Structured version   Visualization version   GIF version

Theorem nnmcan 8427
Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmcan (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem nnmcan
StepHypRef Expression
1 3anrot 1098 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ (𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω))
2 nnmword 8426 . . . . 5 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 ↔ (𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶)))
31, 2sylanb 580 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 ↔ (𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶)))
4 3anrev 1099 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ (𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω))
5 nnmword 8426 . . . . 5 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 ↔ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
64, 5sylanb 580 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 ↔ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
73, 6anbi12d 630 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐵𝐶𝐶𝐵) ↔ ((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵))))
87bicomd 222 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)) ↔ (𝐵𝐶𝐶𝐵)))
9 eqss 3932 . 2 ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
10 eqss 3932 . 2 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
118, 9, 103bitr4g 313 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  c0 4253  (class class class)co 7255  ωcom 7687   ·o comu 8265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-oadd 8271  df-omul 8272
This theorem is referenced by:  mulcanpi  10587
  Copyright terms: Public domain W3C validator