MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcan Structured version   Visualization version   GIF version

Theorem nnmcan 8671
Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmcan (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem nnmcan
StepHypRef Expression
1 3anrot 1099 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ (𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω))
2 nnmword 8670 . . . . 5 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 ↔ (𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶)))
31, 2sylanb 581 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐵𝐶 ↔ (𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶)))
4 3anrev 1100 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ (𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω))
5 nnmword 8670 . . . . 5 (((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 ↔ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
64, 5sylanb 581 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (𝐶𝐵 ↔ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
73, 6anbi12d 632 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐵𝐶𝐶𝐵) ↔ ((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵))))
87bicomd 223 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → (((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)) ↔ (𝐵𝐶𝐶𝐵)))
9 eqss 4011 . 2 ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ ((𝐴 ·o 𝐵) ⊆ (𝐴 ·o 𝐶) ∧ (𝐴 ·o 𝐶) ⊆ (𝐴 ·o 𝐵)))
10 eqss 4011 . 2 (𝐵 = 𝐶 ↔ (𝐵𝐶𝐶𝐵))
118, 9, 103bitr4g 314 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐴) → ((𝐴 ·o 𝐵) = (𝐴 ·o 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963  c0 4339  (class class class)co 7431  ωcom 7887   ·o comu 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-oadd 8509  df-omul 8510
This theorem is referenced by:  mulcanpi  10938
  Copyright terms: Public domain W3C validator