Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pocnv Structured version   Visualization version   GIF version

Theorem pocnv 35488
Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
pocnv (𝑅 Po 𝐴𝑅 Po 𝐴)

Proof of Theorem pocnv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poirr 5602 . . 3 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
2 vex 3465 . . . 4 𝑥 ∈ V
32, 2brcnv 5885 . . 3 (𝑥𝑅𝑥𝑥𝑅𝑥)
41, 3sylnibr 328 . 2 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
5 3anrev 1098 . . . 4 ((𝑥𝐴𝑦𝐴𝑧𝐴) ↔ (𝑧𝐴𝑦𝐴𝑥𝐴))
6 potr 5603 . . . 4 ((𝑅 Po 𝐴 ∧ (𝑧𝐴𝑦𝐴𝑥𝐴)) → ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥))
75, 6sylan2b 592 . . 3 ((𝑅 Po 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥))
8 vex 3465 . . . . 5 𝑦 ∈ V
92, 8brcnv 5885 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 vex 3465 . . . . 5 𝑧 ∈ V
118, 10brcnv 5885 . . . 4 (𝑦𝑅𝑧𝑧𝑅𝑦)
129, 11anbi12ci 627 . . 3 ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑧𝑅𝑦𝑦𝑅𝑥))
132, 10brcnv 5885 . . 3 (𝑥𝑅𝑧𝑧𝑅𝑥)
147, 12, 133imtr4g 295 . 2 ((𝑅 Po 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
154, 14ispod 5599 1 (𝑅 Po 𝐴𝑅 Po 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wcel 2098   class class class wbr 5149   Po wpo 5588  ccnv 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-po 5590  df-cnv 5686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator