Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pocnv Structured version   Visualization version   GIF version

Theorem pocnv 35757
Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
pocnv (𝑅 Po 𝐴𝑅 Po 𝐴)

Proof of Theorem pocnv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poirr 5561 . . 3 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
2 vex 3454 . . . 4 𝑥 ∈ V
32, 2brcnv 5849 . . 3 (𝑥𝑅𝑥𝑥𝑅𝑥)
41, 3sylnibr 329 . 2 ((𝑅 Po 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
5 3anrev 1100 . . . 4 ((𝑥𝐴𝑦𝐴𝑧𝐴) ↔ (𝑧𝐴𝑦𝐴𝑥𝐴))
6 potr 5562 . . . 4 ((𝑅 Po 𝐴 ∧ (𝑧𝐴𝑦𝐴𝑥𝐴)) → ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥))
75, 6sylan2b 594 . . 3 ((𝑅 Po 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑧𝑅𝑦𝑦𝑅𝑥) → 𝑧𝑅𝑥))
8 vex 3454 . . . . 5 𝑦 ∈ V
92, 8brcnv 5849 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
10 vex 3454 . . . . 5 𝑧 ∈ V
118, 10brcnv 5849 . . . 4 (𝑦𝑅𝑧𝑧𝑅𝑦)
129, 11anbi12ci 629 . . 3 ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑧𝑅𝑦𝑦𝑅𝑥))
132, 10brcnv 5849 . . 3 (𝑥𝑅𝑧𝑧𝑅𝑥)
147, 12, 133imtr4g 296 . 2 ((𝑅 Po 𝐴 ∧ (𝑥𝐴𝑦𝐴𝑧𝐴)) → ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
154, 14ispod 5558 1 (𝑅 Po 𝐴𝑅 Po 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5110   Po wpo 5547  ccnv 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-po 5549  df-cnv 5649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator