![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pocnv | Structured version Visualization version GIF version |
Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
pocnv | ⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | poirr 5244 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | |
2 | vex 3388 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2, 2 | brcnv 5508 | . . 3 ⊢ (𝑥◡𝑅𝑥 ↔ 𝑥𝑅𝑥) |
4 | 1, 3 | sylnibr 321 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥◡𝑅𝑥) |
5 | 3anrev 1127 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
6 | potr 5245 | . . . 4 ⊢ ((𝑅 Po 𝐴 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝑧𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑧𝑅𝑥)) | |
7 | 5, 6 | sylan2b 588 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑧𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑧𝑅𝑥)) |
8 | vex 3388 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 2, 8 | brcnv 5508 | . . . 4 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
10 | vex 3388 | . . . . 5 ⊢ 𝑧 ∈ V | |
11 | 8, 10 | brcnv 5508 | . . . 4 ⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
12 | 9, 11 | anbi12ci 622 | . . 3 ⊢ ((𝑥◡𝑅𝑦 ∧ 𝑦◡𝑅𝑧) ↔ (𝑧𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
13 | 2, 10 | brcnv 5508 | . . 3 ⊢ (𝑥◡𝑅𝑧 ↔ 𝑧𝑅𝑥) |
14 | 7, 12, 13 | 3imtr4g 288 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥◡𝑅𝑦 ∧ 𝑦◡𝑅𝑧) → 𝑥◡𝑅𝑧)) |
15 | 4, 14 | ispod 5241 | 1 ⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 class class class wbr 4843 Po wpo 5231 ◡ccnv 5311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-po 5233 df-cnv 5320 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |