| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pocnv | Structured version Visualization version GIF version | ||
| Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018.) |
| Ref | Expression |
|---|---|
| pocnv | ⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poirr 5604 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥𝑅𝑥) | |
| 2 | vex 3484 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2, 2 | brcnv 5893 | . . 3 ⊢ (𝑥◡𝑅𝑥 ↔ 𝑥𝑅𝑥) |
| 4 | 1, 3 | sylnibr 329 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥◡𝑅𝑥) |
| 5 | 3anrev 1101 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
| 6 | potr 5605 | . . . 4 ⊢ ((𝑅 Po 𝐴 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝑧𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑧𝑅𝑥)) | |
| 7 | 5, 6 | sylan2b 594 | . . 3 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑧𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑧𝑅𝑥)) |
| 8 | vex 3484 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 2, 8 | brcnv 5893 | . . . 4 ⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
| 10 | vex 3484 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 11 | 8, 10 | brcnv 5893 | . . . 4 ⊢ (𝑦◡𝑅𝑧 ↔ 𝑧𝑅𝑦) |
| 12 | 9, 11 | anbi12ci 629 | . . 3 ⊢ ((𝑥◡𝑅𝑦 ∧ 𝑦◡𝑅𝑧) ↔ (𝑧𝑅𝑦 ∧ 𝑦𝑅𝑥)) |
| 13 | 2, 10 | brcnv 5893 | . . 3 ⊢ (𝑥◡𝑅𝑧 ↔ 𝑧𝑅𝑥) |
| 14 | 7, 12, 13 | 3imtr4g 296 | . 2 ⊢ ((𝑅 Po 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑥◡𝑅𝑦 ∧ 𝑦◡𝑅𝑧) → 𝑥◡𝑅𝑧)) |
| 15 | 4, 14 | ispod 5601 | 1 ⊢ (𝑅 Po 𝐴 → ◡𝑅 Po 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5143 Po wpo 5590 ◡ccnv 5684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-po 5592 df-cnv 5693 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |