Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odupos | Structured version Visualization version GIF version |
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
odupos.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
odupos | ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odupos.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
2 | 1 | fvexi 6818 | . . 3 ⊢ 𝐷 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ V) |
4 | eqid 2736 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
5 | 1, 4 | odubas 18058 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝐷) |
6 | 5 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → (Base‘𝑂) = (Base‘𝐷)) |
7 | eqid 2736 | . . . 4 ⊢ (le‘𝑂) = (le‘𝑂) | |
8 | 1, 7 | oduleval 18056 | . . 3 ⊢ ◡(le‘𝑂) = (le‘𝐷) |
9 | 8 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → ◡(le‘𝑂) = (le‘𝐷)) |
10 | 4, 7 | posref 18085 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎) |
11 | vex 3441 | . . . 4 ⊢ 𝑎 ∈ V | |
12 | 11, 11 | brcnv 5804 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑎) |
13 | 10, 12 | sylibr 233 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎◡(le‘𝑂)𝑎) |
14 | vex 3441 | . . . . 5 ⊢ 𝑏 ∈ V | |
15 | 11, 14 | brcnv 5804 | . . . 4 ⊢ (𝑎◡(le‘𝑂)𝑏 ↔ 𝑏(le‘𝑂)𝑎) |
16 | 14, 11 | brcnv 5804 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑏) |
17 | 15, 16 | anbi12ci 629 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) ↔ (𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
18 | 4, 7 | posasymb 18086 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) ↔ 𝑎 = 𝑏)) |
19 | 18 | biimpd 228 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
20 | 17, 19 | biimtrid 241 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
21 | 3anrev 1101 | . . . 4 ⊢ ((𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂)) ↔ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) | |
22 | 4, 7 | postr 18087 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
23 | 21, 22 | sylan2b 595 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
24 | vex 3441 | . . . . 5 ⊢ 𝑐 ∈ V | |
25 | 14, 24 | brcnv 5804 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑏) |
26 | 15, 25 | anbi12ci 629 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) ↔ (𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
27 | 11, 24 | brcnv 5804 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑎) |
28 | 23, 26, 27 | 3imtr4g 296 | . 2 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) → 𝑎◡(le‘𝑂)𝑐)) |
29 | 3, 6, 9, 13, 20, 28 | isposd 18090 | 1 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 ◡ccnv 5599 ‘cfv 6458 Basecbs 16961 lecple 17018 ODualcodu 18053 Posetcpo 18074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-dec 12488 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ple 17031 df-odu 18054 df-proset 18062 df-poset 18080 |
This theorem is referenced by: oduposb 18096 posglbdg 18182 odutos 31295 glbprlem 46503 |
Copyright terms: Public domain | W3C validator |