Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > odupos | Structured version Visualization version GIF version |
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
odupos.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
odupos | ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odupos.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
2 | 1 | fvexi 6782 | . . 3 ⊢ 𝐷 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ V) |
4 | eqid 2739 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
5 | 1, 4 | odubas 17990 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝐷) |
6 | 5 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → (Base‘𝑂) = (Base‘𝐷)) |
7 | eqid 2739 | . . . 4 ⊢ (le‘𝑂) = (le‘𝑂) | |
8 | 1, 7 | oduleval 17988 | . . 3 ⊢ ◡(le‘𝑂) = (le‘𝐷) |
9 | 8 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → ◡(le‘𝑂) = (le‘𝐷)) |
10 | 4, 7 | posref 18017 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎) |
11 | vex 3434 | . . . 4 ⊢ 𝑎 ∈ V | |
12 | 11, 11 | brcnv 5788 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑎) |
13 | 10, 12 | sylibr 233 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎◡(le‘𝑂)𝑎) |
14 | vex 3434 | . . . . 5 ⊢ 𝑏 ∈ V | |
15 | 11, 14 | brcnv 5788 | . . . 4 ⊢ (𝑎◡(le‘𝑂)𝑏 ↔ 𝑏(le‘𝑂)𝑎) |
16 | 14, 11 | brcnv 5788 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑏) |
17 | 15, 16 | anbi12ci 627 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) ↔ (𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
18 | 4, 7 | posasymb 18018 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) ↔ 𝑎 = 𝑏)) |
19 | 18 | biimpd 228 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
20 | 17, 19 | syl5bi 241 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
21 | 3anrev 1099 | . . . 4 ⊢ ((𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂)) ↔ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) | |
22 | 4, 7 | postr 18019 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
23 | 21, 22 | sylan2b 593 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
24 | vex 3434 | . . . . 5 ⊢ 𝑐 ∈ V | |
25 | 14, 24 | brcnv 5788 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑏) |
26 | 15, 25 | anbi12ci 627 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) ↔ (𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
27 | 11, 24 | brcnv 5788 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑎) |
28 | 23, 26, 27 | 3imtr4g 295 | . 2 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) → 𝑎◡(le‘𝑂)𝑐)) |
29 | 3, 6, 9, 13, 20, 28 | isposd 18022 | 1 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 ◡ccnv 5587 ‘cfv 6430 Basecbs 16893 lecple 16950 ODualcodu 17985 Posetcpo 18006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-dec 12420 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ple 16963 df-odu 17986 df-proset 17994 df-poset 18012 |
This theorem is referenced by: oduposb 18028 posglbdg 18114 odutos 31225 glbprlem 46211 |
Copyright terms: Public domain | W3C validator |