Step | Hyp | Ref
| Expression |
1 | | odupos.d |
. . . 4
β’ π· = (ODualβπ) |
2 | 1 | fvexi 6902 |
. . 3
β’ π· β V |
3 | 2 | a1i 11 |
. 2
β’ (π β Poset β π· β V) |
4 | | eqid 2732 |
. . . 4
β’
(Baseβπ) =
(Baseβπ) |
5 | 1, 4 | odubas 18240 |
. . 3
β’
(Baseβπ) =
(Baseβπ·) |
6 | 5 | a1i 11 |
. 2
β’ (π β Poset β
(Baseβπ) =
(Baseβπ·)) |
7 | | eqid 2732 |
. . . 4
β’
(leβπ) =
(leβπ) |
8 | 1, 7 | oduleval 18238 |
. . 3
β’ β‘(leβπ) = (leβπ·) |
9 | 8 | a1i 11 |
. 2
β’ (π β Poset β β‘(leβπ) = (leβπ·)) |
10 | 4, 7 | posref 18267 |
. . 3
β’ ((π β Poset β§ π β (Baseβπ)) β π(leβπ)π) |
11 | | vex 3478 |
. . . 4
β’ π β V |
12 | 11, 11 | brcnv 5880 |
. . 3
β’ (πβ‘(leβπ)π β π(leβπ)π) |
13 | 10, 12 | sylibr 233 |
. 2
β’ ((π β Poset β§ π β (Baseβπ)) β πβ‘(leβπ)π) |
14 | | vex 3478 |
. . . . 5
β’ π β V |
15 | 11, 14 | brcnv 5880 |
. . . 4
β’ (πβ‘(leβπ)π β π(leβπ)π) |
16 | 14, 11 | brcnv 5880 |
. . . 4
β’ (πβ‘(leβπ)π β π(leβπ)π) |
17 | 15, 16 | anbi12ci 628 |
. . 3
β’ ((πβ‘(leβπ)π β§ πβ‘(leβπ)π) β (π(leβπ)π β§ π(leβπ)π)) |
18 | 4, 7 | posasymb 18268 |
. . . 4
β’ ((π β Poset β§ π β (Baseβπ) β§ π β (Baseβπ)) β ((π(leβπ)π β§ π(leβπ)π) β π = π)) |
19 | 18 | biimpd 228 |
. . 3
β’ ((π β Poset β§ π β (Baseβπ) β§ π β (Baseβπ)) β ((π(leβπ)π β§ π(leβπ)π) β π = π)) |
20 | 17, 19 | biimtrid 241 |
. 2
β’ ((π β Poset β§ π β (Baseβπ) β§ π β (Baseβπ)) β ((πβ‘(leβπ)π β§ πβ‘(leβπ)π) β π = π)) |
21 | | 3anrev 1101 |
. . . 4
β’ ((π β (Baseβπ) β§ π β (Baseβπ) β§ π β (Baseβπ)) β (π β (Baseβπ) β§ π β (Baseβπ) β§ π β (Baseβπ))) |
22 | 4, 7 | postr 18269 |
. . . 4
β’ ((π β Poset β§ (π β (Baseβπ) β§ π β (Baseβπ) β§ π β (Baseβπ))) β ((π(leβπ)π β§ π(leβπ)π) β π(leβπ)π)) |
23 | 21, 22 | sylan2b 594 |
. . 3
β’ ((π β Poset β§ (π β (Baseβπ) β§ π β (Baseβπ) β§ π β (Baseβπ))) β ((π(leβπ)π β§ π(leβπ)π) β π(leβπ)π)) |
24 | | vex 3478 |
. . . . 5
β’ π β V |
25 | 14, 24 | brcnv 5880 |
. . . 4
β’ (πβ‘(leβπ)π β π(leβπ)π) |
26 | 15, 25 | anbi12ci 628 |
. . 3
β’ ((πβ‘(leβπ)π β§ πβ‘(leβπ)π) β (π(leβπ)π β§ π(leβπ)π)) |
27 | 11, 24 | brcnv 5880 |
. . 3
β’ (πβ‘(leβπ)π β π(leβπ)π) |
28 | 23, 26, 27 | 3imtr4g 295 |
. 2
β’ ((π β Poset β§ (π β (Baseβπ) β§ π β (Baseβπ) β§ π β (Baseβπ))) β ((πβ‘(leβπ)π β§ πβ‘(leβπ)π) β πβ‘(leβπ)π)) |
29 | 3, 6, 9, 13, 20, 28 | isposd 18272 |
1
β’ (π β Poset β π· β Poset) |