MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odupos Structured version   Visualization version   GIF version

Theorem odupos 18325
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
odupos.d 𝐷 = (ODual‘𝑂)
Assertion
Ref Expression
odupos (𝑂 ∈ Poset → 𝐷 ∈ Poset)

Proof of Theorem odupos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odupos.d . . . 4 𝐷 = (ODual‘𝑂)
21fvexi 6914 . . 3 𝐷 ∈ V
32a1i 11 . 2 (𝑂 ∈ Poset → 𝐷 ∈ V)
4 eqid 2727 . . . 4 (Base‘𝑂) = (Base‘𝑂)
51, 4odubas 18288 . . 3 (Base‘𝑂) = (Base‘𝐷)
65a1i 11 . 2 (𝑂 ∈ Poset → (Base‘𝑂) = (Base‘𝐷))
7 eqid 2727 . . . 4 (le‘𝑂) = (le‘𝑂)
81, 7oduleval 18286 . . 3 (le‘𝑂) = (le‘𝐷)
98a1i 11 . 2 (𝑂 ∈ Poset → (le‘𝑂) = (le‘𝐷))
104, 7posref 18315 . . 3 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎)
11 vex 3475 . . . 4 𝑎 ∈ V
1211, 11brcnv 5887 . . 3 (𝑎(le‘𝑂)𝑎𝑎(le‘𝑂)𝑎)
1310, 12sylibr 233 . 2 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎)
14 vex 3475 . . . . 5 𝑏 ∈ V
1511, 14brcnv 5887 . . . 4 (𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎)
1614, 11brcnv 5887 . . . 4 (𝑏(le‘𝑂)𝑎𝑎(le‘𝑂)𝑏)
1715, 16anbi12ci 627 . . 3 ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) ↔ (𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎))
184, 7posasymb 18316 . . . 4 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) ↔ 𝑎 = 𝑏))
1918biimpd 228 . . 3 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏))
2017, 19biimtrid 241 . 2 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏))
21 3anrev 1098 . . . 4 ((𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂)) ↔ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂)))
224, 7postr 18317 . . . 4 ((𝑂 ∈ Poset ∧ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎))
2321, 22sylan2b 592 . . 3 ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎))
24 vex 3475 . . . . 5 𝑐 ∈ V
2514, 24brcnv 5887 . . . 4 (𝑏(le‘𝑂)𝑐𝑐(le‘𝑂)𝑏)
2615, 25anbi12ci 627 . . 3 ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑐) ↔ (𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎))
2711, 24brcnv 5887 . . 3 (𝑎(le‘𝑂)𝑐𝑐(le‘𝑂)𝑎)
2823, 26, 273imtr4g 295 . 2 ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑐) → 𝑎(le‘𝑂)𝑐))
293, 6, 9, 13, 20, 28isposd 18320 1 (𝑂 ∈ Poset → 𝐷 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3471   class class class wbr 5150  ccnv 5679  cfv 6551  Basecbs 17185  lecple 17245  ODualcodu 18283  Posetcpo 18304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-dec 12714  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ple 17258  df-odu 18284  df-proset 18292  df-poset 18310
This theorem is referenced by:  oduposb  18326  posglbdg  18412  odutos  32713  glbprlem  48035
  Copyright terms: Public domain W3C validator