MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odupos Structured version   Visualization version   GIF version

Theorem odupos 18343
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
odupos.d 𝐷 = (ODual‘𝑂)
Assertion
Ref Expression
odupos (𝑂 ∈ Poset → 𝐷 ∈ Poset)

Proof of Theorem odupos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odupos.d . . . 4 𝐷 = (ODual‘𝑂)
21fvexi 6895 . . 3 𝐷 ∈ V
32a1i 11 . 2 (𝑂 ∈ Poset → 𝐷 ∈ V)
4 eqid 2736 . . . 4 (Base‘𝑂) = (Base‘𝑂)
51, 4odubas 18308 . . 3 (Base‘𝑂) = (Base‘𝐷)
65a1i 11 . 2 (𝑂 ∈ Poset → (Base‘𝑂) = (Base‘𝐷))
7 eqid 2736 . . . 4 (le‘𝑂) = (le‘𝑂)
81, 7oduleval 18306 . . 3 (le‘𝑂) = (le‘𝐷)
98a1i 11 . 2 (𝑂 ∈ Poset → (le‘𝑂) = (le‘𝐷))
104, 7posref 18335 . . 3 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎)
11 vex 3468 . . . 4 𝑎 ∈ V
1211, 11brcnv 5867 . . 3 (𝑎(le‘𝑂)𝑎𝑎(le‘𝑂)𝑎)
1310, 12sylibr 234 . 2 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎)
14 vex 3468 . . . . 5 𝑏 ∈ V
1511, 14brcnv 5867 . . . 4 (𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎)
1614, 11brcnv 5867 . . . 4 (𝑏(le‘𝑂)𝑎𝑎(le‘𝑂)𝑏)
1715, 16anbi12ci 629 . . 3 ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) ↔ (𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎))
184, 7posasymb 18336 . . . 4 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) ↔ 𝑎 = 𝑏))
1918biimpd 229 . . 3 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏))
2017, 19biimtrid 242 . 2 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏))
21 3anrev 1100 . . . 4 ((𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂)) ↔ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂)))
224, 7postr 18337 . . . 4 ((𝑂 ∈ Poset ∧ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎))
2321, 22sylan2b 594 . . 3 ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎))
24 vex 3468 . . . . 5 𝑐 ∈ V
2514, 24brcnv 5867 . . . 4 (𝑏(le‘𝑂)𝑐𝑐(le‘𝑂)𝑏)
2615, 25anbi12ci 629 . . 3 ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑐) ↔ (𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎))
2711, 24brcnv 5867 . . 3 (𝑎(le‘𝑂)𝑐𝑐(le‘𝑂)𝑎)
2823, 26, 273imtr4g 296 . 2 ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑐) → 𝑎(le‘𝑂)𝑐))
293, 6, 9, 13, 20, 28isposd 18339 1 (𝑂 ∈ Poset → 𝐷 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464   class class class wbr 5124  ccnv 5658  cfv 6536  Basecbs 17233  lecple 17283  ODualcodu 18303  Posetcpo 18324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-dec 12714  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ple 17296  df-odu 18304  df-proset 18311  df-poset 18330
This theorem is referenced by:  oduposb  18344  posglbdg  18430  odutos  32953  glbprlem  48906
  Copyright terms: Public domain W3C validator