MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odupos Structured version   Visualization version   GIF version

Theorem odupos 17861
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
odupos.d 𝐷 = (ODual‘𝑂)
Assertion
Ref Expression
odupos (𝑂 ∈ Poset → 𝐷 ∈ Poset)

Proof of Theorem odupos
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odupos.d . . . 4 𝐷 = (ODual‘𝑂)
21fvexi 6688 . . 3 𝐷 ∈ V
32a1i 11 . 2 (𝑂 ∈ Poset → 𝐷 ∈ V)
4 eqid 2738 . . . 4 (Base‘𝑂) = (Base‘𝑂)
51, 4odubas 17859 . . 3 (Base‘𝑂) = (Base‘𝐷)
65a1i 11 . 2 (𝑂 ∈ Poset → (Base‘𝑂) = (Base‘𝐷))
7 eqid 2738 . . . 4 (le‘𝑂) = (le‘𝑂)
81, 7oduleval 17857 . . 3 (le‘𝑂) = (le‘𝐷)
98a1i 11 . 2 (𝑂 ∈ Poset → (le‘𝑂) = (le‘𝐷))
104, 7posref 17677 . . 3 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎)
11 vex 3402 . . . 4 𝑎 ∈ V
1211, 11brcnv 5725 . . 3 (𝑎(le‘𝑂)𝑎𝑎(le‘𝑂)𝑎)
1310, 12sylibr 237 . 2 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎)
14 vex 3402 . . . . 5 𝑏 ∈ V
1511, 14brcnv 5725 . . . 4 (𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎)
1614, 11brcnv 5725 . . . 4 (𝑏(le‘𝑂)𝑎𝑎(le‘𝑂)𝑏)
1715, 16anbi12ci 631 . . 3 ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) ↔ (𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎))
184, 7posasymb 17678 . . . 4 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) ↔ 𝑎 = 𝑏))
1918biimpd 232 . . 3 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏))
2017, 19syl5bi 245 . 2 ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏))
21 3anrev 1102 . . . 4 ((𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂)) ↔ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂)))
224, 7postr 17679 . . . 4 ((𝑂 ∈ Poset ∧ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎))
2321, 22sylan2b 597 . . 3 ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎))
24 vex 3402 . . . . 5 𝑐 ∈ V
2514, 24brcnv 5725 . . . 4 (𝑏(le‘𝑂)𝑐𝑐(le‘𝑂)𝑏)
2615, 25anbi12ci 631 . . 3 ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑐) ↔ (𝑐(le‘𝑂)𝑏𝑏(le‘𝑂)𝑎))
2711, 24brcnv 5725 . . 3 (𝑎(le‘𝑂)𝑐𝑐(le‘𝑂)𝑎)
2823, 26, 273imtr4g 299 . 2 ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑎(le‘𝑂)𝑏𝑏(le‘𝑂)𝑐) → 𝑎(le‘𝑂)𝑐))
293, 6, 9, 13, 20, 28isposd 17681 1 (𝑂 ∈ Poset → 𝐷 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  Vcvv 3398   class class class wbr 5030  ccnv 5524  cfv 6339  Basecbs 16586  lecple 16675  Posetcpo 17666  ODualcodu 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-dec 12180  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ple 16688  df-proset 17654  df-poset 17672  df-odu 17855
This theorem is referenced by:  oduposb  17862  posglbd  17876  odutos  30823
  Copyright terms: Public domain W3C validator