![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odupos | Structured version Visualization version GIF version |
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
odupos.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
odupos | ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odupos.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
2 | 1 | fvexi 6914 | . . 3 ⊢ 𝐷 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ V) |
4 | eqid 2727 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
5 | 1, 4 | odubas 18288 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝐷) |
6 | 5 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → (Base‘𝑂) = (Base‘𝐷)) |
7 | eqid 2727 | . . . 4 ⊢ (le‘𝑂) = (le‘𝑂) | |
8 | 1, 7 | oduleval 18286 | . . 3 ⊢ ◡(le‘𝑂) = (le‘𝐷) |
9 | 8 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → ◡(le‘𝑂) = (le‘𝐷)) |
10 | 4, 7 | posref 18315 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎) |
11 | vex 3475 | . . . 4 ⊢ 𝑎 ∈ V | |
12 | 11, 11 | brcnv 5887 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑎) |
13 | 10, 12 | sylibr 233 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎◡(le‘𝑂)𝑎) |
14 | vex 3475 | . . . . 5 ⊢ 𝑏 ∈ V | |
15 | 11, 14 | brcnv 5887 | . . . 4 ⊢ (𝑎◡(le‘𝑂)𝑏 ↔ 𝑏(le‘𝑂)𝑎) |
16 | 14, 11 | brcnv 5887 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑏) |
17 | 15, 16 | anbi12ci 627 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) ↔ (𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
18 | 4, 7 | posasymb 18316 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) ↔ 𝑎 = 𝑏)) |
19 | 18 | biimpd 228 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
20 | 17, 19 | biimtrid 241 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
21 | 3anrev 1098 | . . . 4 ⊢ ((𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂)) ↔ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) | |
22 | 4, 7 | postr 18317 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
23 | 21, 22 | sylan2b 592 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
24 | vex 3475 | . . . . 5 ⊢ 𝑐 ∈ V | |
25 | 14, 24 | brcnv 5887 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑏) |
26 | 15, 25 | anbi12ci 627 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) ↔ (𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
27 | 11, 24 | brcnv 5887 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑎) |
28 | 23, 26, 27 | 3imtr4g 295 | . 2 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) → 𝑎◡(le‘𝑂)𝑐)) |
29 | 3, 6, 9, 13, 20, 28 | isposd 18320 | 1 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3471 class class class wbr 5150 ◡ccnv 5679 ‘cfv 6551 Basecbs 17185 lecple 17245 ODualcodu 18283 Posetcpo 18304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-dec 12714 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ple 17258 df-odu 18284 df-proset 18292 df-poset 18310 |
This theorem is referenced by: oduposb 18326 posglbdg 18412 odutos 32713 glbprlem 48035 |
Copyright terms: Public domain | W3C validator |