| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odupos | Structured version Visualization version GIF version | ||
| Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| odupos.d | ⊢ 𝐷 = (ODual‘𝑂) |
| Ref | Expression |
|---|---|
| odupos | ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odupos.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
| 2 | 1 | fvexi 6831 | . . 3 ⊢ 𝐷 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ V) |
| 4 | eqid 2731 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 5 | 1, 4 | odubas 18192 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝐷) |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → (Base‘𝑂) = (Base‘𝐷)) |
| 7 | eqid 2731 | . . . 4 ⊢ (le‘𝑂) = (le‘𝑂) | |
| 8 | 1, 7 | oduleval 18190 | . . 3 ⊢ ◡(le‘𝑂) = (le‘𝐷) |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → ◡(le‘𝑂) = (le‘𝐷)) |
| 10 | 4, 7 | posref 18219 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎) |
| 11 | vex 3440 | . . . 4 ⊢ 𝑎 ∈ V | |
| 12 | 11, 11 | brcnv 5817 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑎) |
| 13 | 10, 12 | sylibr 234 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎◡(le‘𝑂)𝑎) |
| 14 | vex 3440 | . . . . 5 ⊢ 𝑏 ∈ V | |
| 15 | 11, 14 | brcnv 5817 | . . . 4 ⊢ (𝑎◡(le‘𝑂)𝑏 ↔ 𝑏(le‘𝑂)𝑎) |
| 16 | 14, 11 | brcnv 5817 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑏) |
| 17 | 15, 16 | anbi12ci 629 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) ↔ (𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
| 18 | 4, 7 | posasymb 18220 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) ↔ 𝑎 = 𝑏)) |
| 19 | 18 | biimpd 229 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
| 20 | 17, 19 | biimtrid 242 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
| 21 | 3anrev 1100 | . . . 4 ⊢ ((𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂)) ↔ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) | |
| 22 | 4, 7 | postr 18221 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
| 23 | 21, 22 | sylan2b 594 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
| 24 | vex 3440 | . . . . 5 ⊢ 𝑐 ∈ V | |
| 25 | 14, 24 | brcnv 5817 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑏) |
| 26 | 15, 25 | anbi12ci 629 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) ↔ (𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
| 27 | 11, 24 | brcnv 5817 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑎) |
| 28 | 23, 26, 27 | 3imtr4g 296 | . 2 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) → 𝑎◡(le‘𝑂)𝑐)) |
| 29 | 3, 6, 9, 13, 20, 28 | isposd 18223 | 1 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 ◡ccnv 5610 ‘cfv 6476 Basecbs 17115 lecple 17163 ODualcodu 18187 Posetcpo 18208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-dec 12584 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ple 17176 df-odu 18188 df-proset 18195 df-poset 18214 |
| This theorem is referenced by: oduposb 18228 posglbdg 18314 odutos 32941 glbprlem 48996 |
| Copyright terms: Public domain | W3C validator |