![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabimbieq | Structured version Visualization version GIF version |
Description: Restricted equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 22-Jul-2021.) |
Ref | Expression |
---|---|
rabimbieq.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
rabimbieq.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabimbieq | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabimbieq.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | rabimbieq.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rabbiia 3437 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
4 | 1, 3 | eqtri 2763 | 1 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-rab 3434 |
This theorem is referenced by: abeqinbi 38235 dfsymrels4 38529 dfsymrels5 38530 dffunsALTV2 38666 dffunsALTV3 38667 dffunsALTV4 38668 dfdisjs2 38691 dfdisjs5 38694 |
Copyright terms: Public domain | W3C validator |