| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabimbieq | Structured version Visualization version GIF version | ||
| Description: Restricted equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 22-Jul-2021.) |
| Ref | Expression |
|---|---|
| rabimbieq.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| rabimbieq.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabimbieq | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabimbieq.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 2 | rabimbieq.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rabbiia 3419 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| 4 | 1, 3 | eqtri 2758 | 1 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-rab 3416 |
| This theorem is referenced by: abeqinbi 38271 dfsymrels4 38565 dfsymrels5 38566 dffunsALTV2 38702 dffunsALTV3 38703 dffunsALTV4 38704 dfdisjs2 38727 dfdisjs5 38730 |
| Copyright terms: Public domain | W3C validator |