Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabimbieq Structured version   Visualization version   GIF version

Theorem rabimbieq 38233
Description: Restricted equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 22-Jul-2021.)
Hypotheses
Ref Expression
rabimbieq.1 𝐵 = {𝑥𝐴𝜑}
rabimbieq.2 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rabimbieq 𝐵 = {𝑥𝐴𝜓}

Proof of Theorem rabimbieq
StepHypRef Expression
1 rabimbieq.1 . 2 𝐵 = {𝑥𝐴𝜑}
2 rabimbieq.2 . . 3 (𝑥𝐴 → (𝜑𝜓))
32rabbiia 3437 . 2 {𝑥𝐴𝜑} = {𝑥𝐴𝜓}
41, 3eqtri 2763 1 𝐵 = {𝑥𝐴𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  {crab 3433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-rab 3434
This theorem is referenced by:  abeqinbi  38235  dfsymrels4  38529  dfsymrels5  38530  dffunsALTV2  38666  dffunsALTV3  38667  dffunsALTV4  38668  dfdisjs2  38691  dfdisjs5  38694
  Copyright terms: Public domain W3C validator