![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabimbieq | Structured version Visualization version GIF version |
Description: Restricted equivalent wff's correspond to restricted class abstractions which are equal with the same class. (Contributed by Peter Mazsa, 22-Jul-2021.) |
Ref | Expression |
---|---|
rabimbieq.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
rabimbieq.2 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabimbieq | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabimbieq.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
2 | rabimbieq.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | rabbiia 3437 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
4 | 1, 3 | eqtri 2761 | 1 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-rab 3434 |
This theorem is referenced by: abeqinbi 37121 dfsymrels4 37417 dfsymrels5 37418 dffunsALTV2 37554 dffunsALTV3 37555 dffunsALTV4 37556 dfdisjs2 37579 dfdisjs5 37582 |
Copyright terms: Public domain | W3C validator |