MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab2 Structured version   Visualization version   GIF version

Theorem dfrab2 4241
Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.)
Assertion
Ref Expression
dfrab2 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab2
StepHypRef Expression
1 dfrab3 4240 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
2 incom 4131 . 2 (𝐴 ∩ {𝑥𝜑}) = ({𝑥𝜑} ∩ 𝐴)
31, 2eqtri 2766 1 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2715  {crab 3067  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890
This theorem is referenced by:  dfpred3  6202  lubdm  17984  glbdm  17997  psrbagsn  21181  ismbl  24595  eulerpartgbij  32239  orvcval4  32327  lrrecse  34026  lrrecpred  34028  fvline2  34375  abeqin  36319  rabdif  40112  nznngen  41823
  Copyright terms: Public domain W3C validator