![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfrab2 | Structured version Visualization version GIF version |
Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.) |
Ref | Expression |
---|---|
dfrab2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrab3 4301 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
2 | incom 4193 | . 2 ⊢ (𝐴 ∩ {𝑥 ∣ 𝜑}) = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
3 | 1, 2 | eqtri 2752 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 {cab 2701 {crab 3424 ∩ cin 3939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-in 3947 |
This theorem is referenced by: dfpred3 6301 predres 6330 lubdm 18305 glbdm 18318 psrbagsn 21933 ismbl 25376 lrrecse 27774 lrrecpred 27776 eulerpartgbij 33826 orvcval4 33914 fvline2 35579 abeqin 37576 rabdif 41491 nznngen 43530 |
Copyright terms: Public domain | W3C validator |