| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrab2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| dfrab2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrab3 4272 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
| 2 | incom 4162 | . 2 ⊢ (𝐴 ∩ {𝑥 ∣ 𝜑}) = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
| 3 | 1, 2 | eqtri 2752 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2707 {crab 3396 ∩ cin 3904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-in 3912 |
| This theorem is referenced by: rabdif 4274 dfpred3 6264 predres 6291 lubdm 18273 glbdm 18286 psrbagsn 21986 ismbl 25443 lrrecse 27872 lrrecpred 27874 eulerpartgbij 34342 orvcval4 34431 fvline2 36122 abeqin 38229 nznngen 44292 |
| Copyright terms: Public domain | W3C validator |