| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrab2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| dfrab2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrab3 4268 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
| 2 | incom 4158 | . 2 ⊢ (𝐴 ∩ {𝑥 ∣ 𝜑}) = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
| 3 | 1, 2 | eqtri 2756 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2711 {crab 3396 ∩ cin 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 |
| This theorem is referenced by: rabdif 4270 dfpred3 6267 predres 6294 lubdm 18263 glbdm 18276 psrbagsn 22009 ismbl 25474 lrrecse 27905 lrrecpred 27907 eulerpartgbij 34457 orvcval4 34546 fvline2 36262 abeqin 38362 nznngen 44473 |
| Copyright terms: Public domain | W3C validator |