MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrab2 Structured version   Visualization version   GIF version

Theorem dfrab2 4265
Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.)
Assertion
Ref Expression
dfrab2 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfrab2
StepHypRef Expression
1 dfrab3 4264 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
2 incom 4154 . 2 (𝐴 ∩ {𝑥𝜑}) = ({𝑥𝜑} ∩ 𝐴)
31, 2eqtri 2754 1 {𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2709  {crab 3395  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-in 3904
This theorem is referenced by:  rabdif  4266  dfpred3  6254  predres  6281  lubdm  18250  glbdm  18263  psrbagsn  21993  ismbl  25449  lrrecse  27880  lrrecpred  27882  eulerpartgbij  34377  orvcval4  34466  fvline2  36180  abeqin  38287  nznngen  44349
  Copyright terms: Public domain W3C validator