| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfrab2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.) |
| Ref | Expression |
|---|---|
| dfrab2 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrab3 4264 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
| 2 | incom 4154 | . 2 ⊢ (𝐴 ∩ {𝑥 ∣ 𝜑}) = ({𝑥 ∣ 𝜑} ∩ 𝐴) | |
| 3 | 1, 2 | eqtri 2754 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2709 {crab 3395 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 |
| This theorem is referenced by: rabdif 4266 dfpred3 6254 predres 6281 lubdm 18250 glbdm 18263 psrbagsn 21993 ismbl 25449 lrrecse 27880 lrrecpred 27882 eulerpartgbij 34377 orvcval4 34466 fvline2 36180 abeqin 38287 nznngen 44349 |
| Copyright terms: Public domain | W3C validator |