![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq1 4197 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∩ cin 3939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-in 3947 |
This theorem is referenced by: in12 4212 inindi 4218 dfrab3 4301 dfif5 4536 disjpr2 4709 disjtpsn 4711 disjtp2 4712 resres 5984 imainrect 6170 predidm 6317 fresaun 6752 fresaunres2 6753 ssenen 9146 hartogslem1 9532 prinfzo0 13667 leiso 14416 f1oun2prg 14864 smumul 16430 setsfun 17100 setsfun0 17101 firest 17374 lsmdisj2r 19590 frgpuplem 19677 ltbwe 21900 tgrest 22973 fiuncmp 23218 ptclsg 23429 metnrmlem3 24687 mbfid 25474 ppi1 27000 cht1 27001 ppiub 27041 lrrecse 27763 lrrecpred 27765 chdmj2i 31159 chjassi 31163 pjoml2i 31262 pjoml4i 31264 cmcmlem 31268 mayetes3i 31406 cvmdi 32001 atomli 32059 atabsi 32078 uniin1 32207 disjuniel 32252 imadifxp 32256 gtiso 32346 preiman0 32355 prsss 33351 ordtrest2NEW 33358 esumnul 33501 measinblem 33673 eulerpartlemt 33825 ballotlem2 33942 ballotlemfp1 33945 ballotlemfval0 33949 chtvalz 34096 fmla0disjsuc 34844 mthmpps 35028 dffv5 35357 bj-sscon 36366 bj-discrmoore 36448 mblfinlem2 36982 ismblfin 36985 mbfposadd 36991 itg2addnclem2 36996 asindmre 37027 abeqin 37576 xrnres 37728 redundeq1 37955 refrelsredund4 37958 diophrw 41952 dnwech 42245 lmhmlnmsplit 42284 rp-fakeuninass 42722 iunrelexp0 42908 nznngen 43530 uzinico2 44726 limsup0 44861 limsupvaluz 44875 sge0sn 45546 31prm 46716 |
Copyright terms: Public domain | W3C validator |