Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq1 4139 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-in 3894 |
This theorem is referenced by: in12 4154 inindi 4160 dfrab3 4243 dfif5 4475 disjpr2 4649 disjtpsn 4651 disjtp2 4652 resres 5904 imainrect 6084 predidm 6229 fresaun 6645 fresaunres2 6646 ssenen 8938 hartogslem1 9301 prinfzo0 13426 leiso 14173 f1oun2prg 14630 smumul 16200 setsfun 16872 setsfun0 16873 firest 17143 lsmdisj2r 19291 frgpuplem 19378 ltbwe 21245 tgrest 22310 fiuncmp 22555 ptclsg 22766 metnrmlem3 24024 mbfid 24799 ppi1 26313 cht1 26314 ppiub 26352 chdmj2i 29844 chjassi 29848 pjoml2i 29947 pjoml4i 29949 cmcmlem 29953 mayetes3i 30091 cvmdi 30686 atomli 30744 atabsi 30763 uniin1 30891 disjuniel 30936 imadifxp 30940 gtiso 31033 preiman0 31042 prsss 31866 ordtrest2NEW 31873 esumnul 32016 measinblem 32188 eulerpartlemt 32338 ballotlem2 32455 ballotlemfp1 32458 ballotlemfval0 32462 chtvalz 32609 fmla0disjsuc 33360 mthmpps 33544 lrrecse 34099 lrrecpred 34101 dffv5 34226 bj-sscon 35219 bj-discrmoore 35282 mblfinlem2 35815 ismblfin 35818 mbfposadd 35824 itg2addnclem2 35829 asindmre 35860 abeqin 36392 xrnres 36528 redundeq1 36742 refrelsredund4 36745 diophrw 40581 dnwech 40873 lmhmlnmsplit 40912 rp-fakeuninass 41123 iunrelexp0 41310 nznngen 41934 uzinico2 43100 limsup0 43235 limsupvaluz 43249 sge0sn 43917 31prm 45049 |
Copyright terms: Public domain | W3C validator |