Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq1 4136 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-in 3890 |
This theorem is referenced by: in12 4151 inindi 4157 dfrab3 4240 dfif5 4472 disjpr2 4646 disjtpsn 4648 disjtp2 4649 resres 5893 imainrect 6073 predidm 6218 fresaun 6629 fresaunres2 6630 ssenen 8887 hartogslem1 9231 prinfzo0 13354 leiso 14101 f1oun2prg 14558 smumul 16128 setsfun 16800 setsfun0 16801 firest 17060 lsmdisj2r 19206 frgpuplem 19293 ltbwe 21155 tgrest 22218 fiuncmp 22463 ptclsg 22674 metnrmlem3 23930 mbfid 24704 ppi1 26218 cht1 26219 ppiub 26257 chdmj2i 29745 chjassi 29749 pjoml2i 29848 pjoml4i 29850 cmcmlem 29854 mayetes3i 29992 cvmdi 30587 atomli 30645 atabsi 30664 uniin1 30792 disjuniel 30837 imadifxp 30841 gtiso 30935 preiman0 30944 prsss 31768 ordtrest2NEW 31775 esumnul 31916 measinblem 32088 eulerpartlemt 32238 ballotlem2 32355 ballotlemfp1 32358 ballotlemfval0 32362 chtvalz 32509 fmla0disjsuc 33260 mthmpps 33444 lrrecse 34026 lrrecpred 34028 dffv5 34153 bj-sscon 35146 bj-discrmoore 35209 mblfinlem2 35742 ismblfin 35745 mbfposadd 35751 itg2addnclem2 35756 asindmre 35787 abeqin 36319 xrnres 36455 redundeq1 36669 refrelsredund4 36672 diophrw 40497 dnwech 40789 lmhmlnmsplit 40828 rp-fakeuninass 41021 iunrelexp0 41199 nznngen 41823 uzinico2 42990 limsup0 43125 limsupvaluz 43139 sge0sn 43807 31prm 44937 |
Copyright terms: Public domain | W3C validator |