| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq1 4164 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-in 3910 |
| This theorem is referenced by: in12 4180 inindi 4186 dfrab3 4270 dfif5 4493 disjpr2 4665 disjtpsn 4667 disjtp2 4668 resres 5943 imainrect 6130 predidm 6274 fresaun 6695 fresaunres2 6696 ssenen 9068 hartogslem1 9434 prinfzo0 13601 leiso 14366 f1oun2prg 14824 smumul 16404 setsfun 17082 setsfun0 17083 firest 17336 lsmdisj2r 19564 frgpuplem 19651 ltbwe 21949 tgrest 23044 fiuncmp 23289 ptclsg 23500 metnrmlem3 24748 mbfid 25534 ppi1 27072 cht1 27073 ppiub 27113 lrrecse 27854 lrrecpred 27856 chdmj2i 31426 chjassi 31430 pjoml2i 31529 pjoml4i 31531 cmcmlem 31535 mayetes3i 31673 cvmdi 32268 atomli 32326 atabsi 32345 uniin1 32495 disjuniel 32541 imadifxp 32545 gtiso 32643 preiman0 32652 nn0disj01 32763 prsss 33883 ordtrest2NEW 33890 esumnul 34015 measinblem 34187 eulerpartlemt 34339 ballotlem2 34457 ballotlemfp1 34460 ballotlemfval0 34464 chtvalz 34597 fmla0disjsuc 35371 mthmpps 35555 dffv5 35898 bj-sscon 37003 bj-discrmoore 37085 mblfinlem2 37638 ismblfin 37641 mbfposadd 37647 itg2addnclem2 37652 asindmre 37683 abeqin 38227 xrnres 38374 redundeq1 38606 refrelsredund4 38609 diophrw 42732 dnwech 43021 lmhmlnmsplit 43060 rp-fakeuninass 43489 iunrelexp0 43675 nznngen 44289 uzinico2 45542 limsup0 45675 limsupvaluz 45689 sge0sn 46360 31prm 47581 |
| Copyright terms: Public domain | W3C validator |