![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq1 4234 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-in 3983 |
This theorem is referenced by: in12 4250 inindi 4256 dfrab3 4338 dfif5 4564 disjpr2 4738 disjtpsn 4740 disjtp2 4741 resres 6022 imainrect 6212 predidm 6358 fresaun 6792 fresaunres2 6793 ssenen 9217 hartogslem1 9611 prinfzo0 13755 leiso 14508 f1oun2prg 14966 smumul 16539 setsfun 17218 setsfun0 17219 firest 17492 lsmdisj2r 19727 frgpuplem 19814 ltbwe 22085 tgrest 23188 fiuncmp 23433 ptclsg 23644 metnrmlem3 24902 mbfid 25689 ppi1 27225 cht1 27226 ppiub 27266 lrrecse 27993 lrrecpred 27995 chdmj2i 31514 chjassi 31518 pjoml2i 31617 pjoml4i 31619 cmcmlem 31623 mayetes3i 31761 cvmdi 32356 atomli 32414 atabsi 32433 uniin1 32574 disjuniel 32619 imadifxp 32623 gtiso 32712 preiman0 32721 nn0disj01 32822 prsss 33862 ordtrest2NEW 33869 esumnul 34012 measinblem 34184 eulerpartlemt 34336 ballotlem2 34453 ballotlemfp1 34456 ballotlemfval0 34460 chtvalz 34606 fmla0disjsuc 35366 mthmpps 35550 dffv5 35888 bj-sscon 36995 bj-discrmoore 37077 mblfinlem2 37618 ismblfin 37621 mbfposadd 37627 itg2addnclem2 37632 asindmre 37663 abeqin 38208 xrnres 38358 redundeq1 38585 refrelsredund4 38588 diophrw 42715 dnwech 43005 lmhmlnmsplit 43044 rp-fakeuninass 43478 iunrelexp0 43664 nznngen 44285 uzinico2 45480 limsup0 45615 limsupvaluz 45629 sge0sn 46300 31prm 47471 |
Copyright terms: Public domain | W3C validator |