| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq1 4172 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-in 3918 |
| This theorem is referenced by: in12 4188 inindi 4194 dfrab3 4278 dfif5 4501 disjpr2 4673 disjtpsn 4675 disjtp2 4676 resres 5952 imainrect 6142 predidm 6287 fresaun 6713 fresaunres2 6714 ssenen 9092 hartogslem1 9471 prinfzo0 13635 leiso 14400 f1oun2prg 14859 smumul 16439 setsfun 17117 setsfun0 17118 firest 17371 lsmdisj2r 19591 frgpuplem 19678 ltbwe 21927 tgrest 23022 fiuncmp 23267 ptclsg 23478 metnrmlem3 24726 mbfid 25512 ppi1 27050 cht1 27051 ppiub 27091 lrrecse 27825 lrrecpred 27827 chdmj2i 31384 chjassi 31388 pjoml2i 31487 pjoml4i 31489 cmcmlem 31493 mayetes3i 31631 cvmdi 32226 atomli 32284 atabsi 32303 uniin1 32453 disjuniel 32499 imadifxp 32503 gtiso 32597 preiman0 32606 nn0disj01 32716 prsss 33879 ordtrest2NEW 33886 esumnul 34011 measinblem 34183 eulerpartlemt 34335 ballotlem2 34453 ballotlemfp1 34456 ballotlemfval0 34460 chtvalz 34593 fmla0disjsuc 35358 mthmpps 35542 dffv5 35885 bj-sscon 36990 bj-discrmoore 37072 mblfinlem2 37625 ismblfin 37628 mbfposadd 37634 itg2addnclem2 37639 asindmre 37670 abeqin 38214 xrnres 38361 redundeq1 38593 refrelsredund4 38596 diophrw 42720 dnwech 43010 lmhmlnmsplit 43049 rp-fakeuninass 43478 iunrelexp0 43664 nznngen 44278 uzinico2 45532 limsup0 45665 limsupvaluz 45679 sge0sn 46350 31prm 47571 |
| Copyright terms: Public domain | W3C validator |