| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq1 4176 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-in 3921 |
| This theorem is referenced by: in12 4192 inindi 4198 dfrab3 4282 dfif5 4505 disjpr2 4677 disjtpsn 4679 disjtp2 4680 resres 5963 imainrect 6154 predidm 6299 fresaun 6731 fresaunres2 6732 ssenen 9115 hartogslem1 9495 prinfzo0 13659 leiso 14424 f1oun2prg 14883 smumul 16463 setsfun 17141 setsfun0 17142 firest 17395 lsmdisj2r 19615 frgpuplem 19702 ltbwe 21951 tgrest 23046 fiuncmp 23291 ptclsg 23502 metnrmlem3 24750 mbfid 25536 ppi1 27074 cht1 27075 ppiub 27115 lrrecse 27849 lrrecpred 27851 chdmj2i 31411 chjassi 31415 pjoml2i 31514 pjoml4i 31516 cmcmlem 31520 mayetes3i 31658 cvmdi 32253 atomli 32311 atabsi 32330 uniin1 32480 disjuniel 32526 imadifxp 32530 gtiso 32624 preiman0 32633 nn0disj01 32743 prsss 33906 ordtrest2NEW 33913 esumnul 34038 measinblem 34210 eulerpartlemt 34362 ballotlem2 34480 ballotlemfp1 34483 ballotlemfval0 34487 chtvalz 34620 fmla0disjsuc 35385 mthmpps 35569 dffv5 35912 bj-sscon 37017 bj-discrmoore 37099 mblfinlem2 37652 ismblfin 37655 mbfposadd 37661 itg2addnclem2 37666 asindmre 37697 abeqin 38241 xrnres 38388 redundeq1 38620 refrelsredund4 38623 diophrw 42747 dnwech 43037 lmhmlnmsplit 43076 rp-fakeuninass 43505 iunrelexp0 43691 nznngen 44305 uzinico2 45559 limsup0 45692 limsupvaluz 45706 sge0sn 46377 31prm 47595 |
| Copyright terms: Public domain | W3C validator |