| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq1 4158 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-in 3904 |
| This theorem is referenced by: in12 4174 inindi 4180 dfrab3 4264 dfif5 4487 disjpr2 4661 disjtpsn 4663 disjtp2 4664 resres 5936 imainrect 6123 predidm 6268 fresaun 6689 fresaunres2 6690 ssenen 9059 hartogslem1 9423 prinfzo0 13593 leiso 14361 f1oun2prg 14819 smumul 16399 setsfun 17077 setsfun0 17078 firest 17331 lsmdisj2r 19592 frgpuplem 19679 ltbwe 21974 tgrest 23069 fiuncmp 23314 ptclsg 23525 metnrmlem3 24772 mbfid 25558 ppi1 27096 cht1 27097 ppiub 27137 lrrecse 27880 lrrecpred 27882 chdmj2i 31454 chjassi 31458 pjoml2i 31557 pjoml4i 31559 cmcmlem 31563 mayetes3i 31701 cvmdi 32296 atomli 32354 atabsi 32373 uniin1 32523 disjuniel 32569 imadifxp 32573 gtiso 32674 preiman0 32683 nn0disj01 32793 prsss 33921 ordtrest2NEW 33928 esumnul 34053 measinblem 34225 eulerpartlemt 34376 ballotlem2 34494 ballotlemfp1 34497 ballotlemfval0 34501 chtvalz 34634 fmla0disjsuc 35434 mthmpps 35618 dffv5 35958 bj-sscon 37063 bj-discrmoore 37145 mblfinlem2 37698 ismblfin 37701 mbfposadd 37707 itg2addnclem2 37712 asindmre 37743 abeqin 38287 xrnres 38434 redundeq1 38666 refrelsredund4 38669 diophrw 42792 dnwech 43081 lmhmlnmsplit 43120 rp-fakeuninass 43549 iunrelexp0 43735 nznngen 44349 uzinico2 45601 limsup0 45732 limsupvaluz 45746 sge0sn 46417 31prm 47628 |
| Copyright terms: Public domain | W3C validator |