| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
| Ref | Expression |
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq1 4193 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-in 3938 |
| This theorem is referenced by: in12 4209 inindi 4215 dfrab3 4299 dfif5 4522 disjpr2 4694 disjtpsn 4696 disjtp2 4697 resres 5984 imainrect 6175 predidm 6320 fresaun 6754 fresaunres2 6755 ssenen 9170 hartogslem1 9561 prinfzo0 13720 leiso 14482 f1oun2prg 14941 smumul 16517 setsfun 17195 setsfun0 17196 firest 17451 lsmdisj2r 19671 frgpuplem 19758 ltbwe 22007 tgrest 23102 fiuncmp 23347 ptclsg 23558 metnrmlem3 24806 mbfid 25593 ppi1 27131 cht1 27132 ppiub 27172 lrrecse 27906 lrrecpred 27908 chdmj2i 31468 chjassi 31472 pjoml2i 31571 pjoml4i 31573 cmcmlem 31577 mayetes3i 31715 cvmdi 32310 atomli 32368 atabsi 32387 uniin1 32537 disjuniel 32583 imadifxp 32587 gtiso 32683 preiman0 32692 nn0disj01 32802 prsss 33952 ordtrest2NEW 33959 esumnul 34084 measinblem 34256 eulerpartlemt 34408 ballotlem2 34526 ballotlemfp1 34529 ballotlemfval0 34533 chtvalz 34666 fmla0disjsuc 35425 mthmpps 35609 dffv5 35947 bj-sscon 37052 bj-discrmoore 37134 mblfinlem2 37687 ismblfin 37690 mbfposadd 37696 itg2addnclem2 37701 asindmre 37732 abeqin 38275 xrnres 38425 redundeq1 38652 refrelsredund4 38655 diophrw 42749 dnwech 43039 lmhmlnmsplit 43078 rp-fakeuninass 43507 iunrelexp0 43693 nznngen 44307 uzinico2 45557 limsup0 45690 limsupvaluz 45704 sge0sn 46375 31prm 47578 |
| Copyright terms: Public domain | W3C validator |