Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ineq1i | Structured version Visualization version GIF version |
Description: Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
Ref | Expression |
---|---|
ineq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ineq1i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | ineq1 4111 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∩ cin 3859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-in 3867 |
This theorem is referenced by: in12 4127 inindi 4133 dfrab3 4214 dfif5 4439 disjpr2 4609 disjtpsn 4611 disjtp2 4612 resres 5840 imainrect 6014 predidm 6152 fresaun 6538 fresaunres2 6539 ssenen 8718 hartogslem1 9044 prinfzo0 13130 leiso 13874 f1oun2prg 14331 smumul 15897 setsfun 16581 setsfun0 16582 firest 16769 lsmdisj2r 18883 frgpuplem 18970 ltbwe 20809 tgrest 21864 fiuncmp 22109 ptclsg 22320 metnrmlem3 23567 mbfid 24340 ppi1 25853 cht1 25854 ppiub 25892 chdmj2i 29369 chjassi 29373 pjoml2i 29472 pjoml4i 29474 cmcmlem 29478 mayetes3i 29616 cvmdi 30211 atomli 30269 atabsi 30288 uniin1 30418 disjuniel 30463 imadifxp 30467 gtiso 30561 preiman0 30570 prsss 31391 ordtrest2NEW 31398 esumnul 31539 measinblem 31711 eulerpartlemt 31861 ballotlem2 31978 ballotlemfp1 31981 ballotlemfval0 31985 chtvalz 32132 fmla0disjsuc 32880 mthmpps 33064 lrrecse 33673 lrrecpred 33675 dffv5 33801 bj-sscon 34772 bj-discrmoore 34832 mblfinlem2 35401 ismblfin 35404 mbfposadd 35410 itg2addnclem2 35415 asindmre 35446 abeqin 35980 xrnres 36116 redundeq1 36330 refrelsredund4 36333 diophrw 40101 dnwech 40393 lmhmlnmsplit 40432 rp-fakeuninass 40625 iunrelexp0 40804 nznngen 41421 uzinico2 42593 limsup0 42730 limsupvaluz 42744 sge0sn 43412 31prm 44510 |
Copyright terms: Public domain | W3C validator |