| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abeqinbi | Structured version Visualization version GIF version | ||
| Description: Intersection with class abstraction and equivalent wff's. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| Ref | Expression |
|---|---|
| abeqinbi.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
| abeqinbi.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| abeqinbi.3 | ⊢ (𝑥 ∈ 𝐶 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| abeqinbi | ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqinbi.1 | . . 3 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
| 2 | abeqinbi.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 3 | 1, 2 | abeqin 38299 | . 2 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
| 4 | abeqinbi.3 | . 2 ⊢ (𝑥 ∈ 𝐶 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | rabimbieq 38298 | 1 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 |
| This theorem is referenced by: dfrefrels2 38615 dfcnvrefrels2 38630 dfsymrels2 38647 dftrrels2 38681 |
| Copyright terms: Public domain | W3C validator |