| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abeqinbi | Structured version Visualization version GIF version | ||
| Description: Intersection with class abstraction and equivalent wff's. (Contributed by Peter Mazsa, 21-Jul-2021.) |
| Ref | Expression |
|---|---|
| abeqinbi.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
| abeqinbi.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
| abeqinbi.3 | ⊢ (𝑥 ∈ 𝐶 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| abeqinbi | ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeqinbi.1 | . . 3 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
| 2 | abeqinbi.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
| 3 | 1, 2 | abeqin 38275 | . 2 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
| 4 | abeqinbi.3 | . 2 ⊢ (𝑥 ∈ 𝐶 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | rabimbieq 38274 | 1 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 {crab 3420 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 |
| This theorem is referenced by: dfrefrels2 38536 dfcnvrefrels2 38551 dfsymrels2 38568 dftrrels2 38598 |
| Copyright terms: Public domain | W3C validator |