![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abeqinbi | Structured version Visualization version GIF version |
Description: Intersection with class abstraction and equivalent wff's. (Contributed by Peter Mazsa, 21-Jul-2021.) |
Ref | Expression |
---|---|
abeqinbi.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
abeqinbi.2 | ⊢ 𝐵 = {𝑥 ∣ 𝜑} |
abeqinbi.3 | ⊢ (𝑥 ∈ 𝐶 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
abeqinbi | ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeqinbi.1 | . . 3 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
2 | abeqinbi.2 | . . 3 ⊢ 𝐵 = {𝑥 ∣ 𝜑} | |
3 | 1, 2 | abeqin 35046 | . 2 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜑} |
4 | abeqinbi.3 | . 2 ⊢ (𝑥 ∈ 𝐶 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | rabimbieq 35045 | 1 ⊢ 𝐴 = {𝑥 ∈ 𝐶 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 = wceq 1522 ∈ wcel 2081 {cab 2775 {crab 3109 ∩ cin 3858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 df-in 3866 |
This theorem is referenced by: dfrefrels2 35284 dfcnvrefrels2 35297 dfsymrels2 35312 dftrrels2 35342 |
Copyright terms: Public domain | W3C validator |