MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abfOLD Structured version   Visualization version   GIF version

Theorem abfOLD 4337
Description: Obsolete version of abf 4336 as of 28-Jun-2024. (Contributed by NM, 20-Jan-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
abfOLD.1 ¬ 𝜑
Assertion
Ref Expression
abfOLD {𝑥𝜑} = ∅

Proof of Theorem abfOLD
StepHypRef Expression
1 ab0 4308 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
2 abfOLD.1 . 2 ¬ 𝜑
31, 2mpgbir 1802 1 {𝑥𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  {cab 2715  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-dif 3890  df-nul 4257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator