| Step | Hyp | Ref
| Expression |
| 1 | | initoeu1.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ (InitO‘𝐶)) |
| 2 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 3 | | eqid 2737 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 4 | | initoeu1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 5 | 2, 3, 4 | isinitoi 18044 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (InitO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏))) |
| 6 | 1, 5 | mpdan 687 |
. 2
⊢ (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏))) |
| 7 | | initoeu1.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (InitO‘𝐶)) |
| 8 | 2, 3, 4 | isinitoi 18044 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ∈ (InitO‘𝐶)) → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) |
| 9 | 7, 8 | mpdan 687 |
. . . 4
⊢ (𝜑 → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) |
| 10 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → (𝐴(Hom ‘𝐶)𝑏) = (𝐴(Hom ‘𝐶)𝐵)) |
| 11 | 10 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))) |
| 12 | 11 | eubidv 2586 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))) |
| 13 | 12 | rspcv 3618 |
. . . . . . 7
⊢ (𝐵 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))) |
| 14 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
| 15 | 4 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
| 16 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶)) |
| 17 | | simprl 771 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶)) |
| 18 | 2, 3, 14, 15, 16, 17 | isohom 17820 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵)) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵)) |
| 20 | | euex 2577 |
. . . . . . . . . . . . . . 15
⊢
(∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))) |
| 22 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝐴 → (𝐵(Hom ‘𝐶)𝑎) = (𝐵(Hom ‘𝐶)𝐴)) |
| 23 | 22 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝐴 → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) ↔ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))) |
| 24 | 23 | eubidv 2586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝐴 → (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) ↔ ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))) |
| 25 | 24 | rspcva 3620 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) |
| 26 | | euex 2577 |
. . . . . . . . . . . . . . . . 17
⊢
(∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) |
| 28 | 27 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))) |
| 29 | 28 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))) |
| 30 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Inv‘𝐶) =
(Inv‘𝐶) |
| 31 | 15 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat) |
| 32 | 16 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶)) |
| 33 | 17 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶)) |
| 34 | 4, 1, 7 | 2initoinv 18055 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔) |
| 35 | 34 | ad4ant134 1175 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔) |
| 36 | 2, 30, 31, 32, 33, 14, 35 | inviso1 17810 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 37 | 36 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
| 38 | 37 | eximdv 1917 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
| 39 | 38 | expcom 413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))) |
| 40 | 39 | exlimiv 1930 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))) |
| 41 | 40 | com3l 89 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))) |
| 42 | 41 | impd 410 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
| 43 | 21, 29, 42 | syl2and 608 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
| 44 | 43 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 45 | | simprl 771 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) |
| 46 | | euelss 4332 |
. . . . . . . . . . . 12
⊢ (((𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) ∧ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 47 | 19, 44, 45, 46 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 48 | 47 | exp42 435 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∈ (Base‘𝐶) → (𝐴 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))) |
| 49 | 48 | com24 95 |
. . . . . . . . 9
⊢ (𝜑 → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (𝐵 ∈ (Base‘𝐶) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))) |
| 50 | 49 | com14 96 |
. . . . . . . 8
⊢ (𝐵 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))) |
| 51 | 50 | expd 415 |
. . . . . . 7
⊢ (𝐵 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))) |
| 52 | 13, 51 | syldc 48 |
. . . . . 6
⊢
(∀𝑏 ∈
(Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))) |
| 53 | 52 | com15 101 |
. . . . 5
⊢ (𝜑 → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))) |
| 54 | 53 | impd 410 |
. . . 4
⊢ (𝜑 → ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))) |
| 55 | 9, 54 | mpd 15 |
. . 3
⊢ (𝜑 → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))) |
| 56 | 55 | impd 410 |
. 2
⊢ (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
| 57 | 6, 56 | mpd 15 |
1
⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |