MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu1 Structured version   Visualization version   GIF version

Theorem initoeu1 17726
Description: Initial objects are essentially unique (strong form), i.e. there is a unique isomorphism between two initial objects, see statement in [Lang] p. 58 ("... if P, P' are two universal objects [...] then there exists a unique isomorphism between them.". (Proposed by BJ, 14-Apr-2020.) (Contributed by AV, 14-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu1.b (𝜑𝐵 ∈ (InitO‘𝐶))
Assertion
Ref Expression
initoeu1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝐶,𝑓   𝜑,𝑓

Proof of Theorem initoeu1
Dummy variables 𝑎 𝑔 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initoeu1.a . . 3 (𝜑𝐴 ∈ (InitO‘𝐶))
2 eqid 2738 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
4 initoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
52, 3, 4isinitoi 17714 . . 3 ((𝜑𝐴 ∈ (InitO‘𝐶)) → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
61, 5mpdan 684 . 2 (𝜑 → (𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)))
7 initoeu1.b . . . . 5 (𝜑𝐵 ∈ (InitO‘𝐶))
82, 3, 4isinitoi 17714 . . . . 5 ((𝜑𝐵 ∈ (InitO‘𝐶)) → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)))
97, 8mpdan 684 . . . 4 (𝜑 → (𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)))
10 oveq2 7283 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐴(Hom ‘𝐶)𝑏) = (𝐴(Hom ‘𝐶)𝐵))
1110eleq2d 2824 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1211eubidv 2586 . . . . . . . 8 (𝑏 = 𝐵 → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) ↔ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
1312rspcv 3557 . . . . . . 7 (𝐵 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
14 eqid 2738 . . . . . . . . . . . . . 14 (Iso‘𝐶) = (Iso‘𝐶)
154adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
16 simprr 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐴 ∈ (Base‘𝐶))
17 simprl 768 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → 𝐵 ∈ (Base‘𝐶))
182, 3, 14, 15, 16, 17isohom 17488 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
1918adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → (𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵))
20 euex 2577 . . . . . . . . . . . . . . 15 (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
2120a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)))
22 oveq2 7283 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝐴 → (𝐵(Hom ‘𝐶)𝑎) = (𝐵(Hom ‘𝐶)𝐴))
2322eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝐴 → (𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) ↔ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2423eubidv 2586 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝐴 → (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) ↔ ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2524rspcva 3559 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
26 euex 2577 . . . . . . . . . . . . . . . . 17 (∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2725, 26syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴))
2827ex 413 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
2928ad2antll 726 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)))
30 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (Inv‘𝐶) = (Inv‘𝐶)
3115ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
3216ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
3317ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
344, 1, 72initoinv 17725 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
3534ad4ant134 1173 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓(𝐴(Inv‘𝐶)𝐵)𝑔)
362, 30, 31, 32, 33, 14, 35inviso1 17478 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) ∧ 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
3736ex 413 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
3837eximdv 1920 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
3938expcom 414 . . . . . . . . . . . . . . . . 17 (𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4039exlimiv 1933 . . . . . . . . . . . . . . . 16 (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4140com3l 89 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
4241impd 411 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝐴)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4321, 29, 42syl2and 608 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
4443imp 407 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
45 simprl 768 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵))
46 euelss 4255 . . . . . . . . . . . 12 (((𝐴(Iso‘𝐶)𝐵) ⊆ (𝐴(Hom ‘𝐶)𝐵) ∧ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) ∧ ∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4719, 44, 45, 46syl3anc 1370 . . . . . . . . . . 11 (((𝜑 ∧ (𝐵 ∈ (Base‘𝐶) ∧ 𝐴 ∈ (Base‘𝐶))) ∧ (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎))) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
4847exp42 436 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (𝐴 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
4948com24 95 . . . . . . . . 9 (𝜑 → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (𝐵 ∈ (Base‘𝐶) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5049com14 96 . . . . . . . 8 (𝐵 ∈ (Base‘𝐶) → ((∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
5150expd 416 . . . . . . 7 (𝐵 ∈ (Base‘𝐶) → (∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝐵) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5213, 51syldc 48 . . . . . 6 (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5352com15 101 . . . . 5 (𝜑 → (𝐵 ∈ (Base‘𝐶) → (∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))))
5453impd 411 . . . 4 (𝜑 → ((𝐵 ∈ (Base‘𝐶) ∧ ∀𝑎 ∈ (Base‘𝐶)∃!𝑔 𝑔 ∈ (𝐵(Hom ‘𝐶)𝑎)) → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))))
559, 54mpd 15 . . 3 (𝜑 → (𝐴 ∈ (Base‘𝐶) → (∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))))
5655impd 411 . 2 (𝜑 → ((𝐴 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!𝑓 𝑓 ∈ (𝐴(Hom ‘𝐶)𝑏)) → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
576, 56mpd 15 1 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  wral 3064  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  Hom chom 16973  Catccat 17373  Invcinv 17457  Isociso 17458  InitOcinito 17696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-cat 17377  df-cid 17378  df-sect 17459  df-inv 17460  df-iso 17461  df-inito 17699
This theorem is referenced by:  initoeu1w  17727
  Copyright terms: Public domain W3C validator