MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quscrng Structured version   Visualization version   GIF version

Theorem quscrng 20424
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
quscrng.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
quscrng.i 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
quscrng ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)

Proof of Theorem quscrng
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19710 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 480 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
3 simpr 484 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆𝐼)
4 quscrng.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
54crng2idl 20423 . . . . 5 (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
65adantr 480 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝐼 = (2Ideal‘𝑅))
73, 6eleqtrd 2841 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (2Ideal‘𝑅))
8 quscrng.u . . . 4 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
9 eqid 2738 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
108, 9qusring 20420 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → 𝑈 ∈ Ring)
112, 7, 10syl2anc 583 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
128a1i 11 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
13 eqidd 2739 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (Base‘𝑅) = (Base‘𝑅))
14 ovexd 7290 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) ∈ V)
1512, 13, 14, 2qusbas 17173 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = (Base‘𝑈))
1615eleq2d 2824 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝑈)))
1715eleq2d 2824 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝑈)))
1816, 17anbi12d 630 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ↔ (𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈))))
19 eqid 2738 . . . . . 6 ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = ((Base‘𝑅) / (𝑅 ~QG 𝑆))
20 oveq2 7263 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)𝑦))
21 oveq1 7262 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) = (𝑦(.r𝑈)𝑥))
2220, 21eqeq12d 2754 . . . . . 6 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ((𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) ↔ (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
23 oveq1 7262 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)))
24 oveq2 7263 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
2523, 24eqeq12d 2754 . . . . . . . 8 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → (([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) ↔ (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥)))
26 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
27 eqid 2738 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
2826, 27crngcom 19716 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
2928ad4ant134 1172 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
3029eceq1d 8495 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
314lidlsubg 20399 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
321, 31sylan 579 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
33 eqid 2738 . . . . . . . . . . . . 13 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
3426, 33eqger 18721 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
3532, 34syl 17 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
3626, 33, 9, 272idlcpbl 20418 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
372, 7, 36syl2anc 583 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
3826, 27ringcl 19715 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅)) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
39383expb 1118 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
402, 39sylan 579 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
41 eqid 2738 . . . . . . . . . . 11 (.r𝑈) = (.r𝑈)
4212, 13, 35, 2, 37, 40, 27, 41qusmulval 17183 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
43423expa 1116 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
4412, 13, 35, 2, 37, 40, 27, 41qusmulval 17183 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
45443expa 1116 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑣 ∈ (Base‘𝑅)) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4645an32s 648 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4730, 43, 463eqtr4rd 2789 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)))
4819, 25, 47ectocld 8531 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
4948an32s 648 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
5019, 22, 49ectocld 8531 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
5150expl 457 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5218, 51sylbird 259 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5352ralrimivv 3113 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
54 eqid 2738 . . 3 (Base‘𝑈) = (Base‘𝑈)
5554, 41iscrng2 19717 . 2 (𝑈 ∈ CRing ↔ (𝑈 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5611, 53, 55sylanbrc 582 1 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422   class class class wbr 5070  cfv 6418  (class class class)co 7255   Er wer 8453  [cec 8454   / cqs 8455  Basecbs 16840  .rcmulr 16889   /s cqus 17133  SubGrpcsubg 18664   ~QG cqg 18666  Ringcrg 19698  CRingccrg 19699  LIdealclidl 20347  2Idealc2idl 20415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-qs 8462  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-imas 17136  df-qus 17137  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-nsg 18668  df-eqg 18669  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-2idl 20416
This theorem is referenced by:  zncrng2  20650  qsidomlem2  31531
  Copyright terms: Public domain W3C validator