Step | Hyp | Ref
| Expression |
1 | | crngring 20061 |
. . . 4
β’ (π
β CRing β π
β Ring) |
2 | 1 | adantr 481 |
. . 3
β’ ((π
β CRing β§ π β πΌ) β π
β Ring) |
3 | | simpr 485 |
. . . 4
β’ ((π
β CRing β§ π β πΌ) β π β πΌ) |
4 | | quscrng.i |
. . . . . 6
β’ πΌ = (LIdealβπ
) |
5 | 4 | crng2idl 20869 |
. . . . 5
β’ (π
β CRing β πΌ = (2Idealβπ
)) |
6 | 5 | adantr 481 |
. . . 4
β’ ((π
β CRing β§ π β πΌ) β πΌ = (2Idealβπ
)) |
7 | 3, 6 | eleqtrd 2835 |
. . 3
β’ ((π
β CRing β§ π β πΌ) β π β (2Idealβπ
)) |
8 | | quscrng.u |
. . . 4
β’ π = (π
/s (π
~QG π)) |
9 | | eqid 2732 |
. . . 4
β’
(2Idealβπ
) =
(2Idealβπ
) |
10 | 8, 9 | qusring 20865 |
. . 3
β’ ((π
β Ring β§ π β (2Idealβπ
)) β π β Ring) |
11 | 2, 7, 10 | syl2anc 584 |
. 2
β’ ((π
β CRing β§ π β πΌ) β π β Ring) |
12 | 8 | a1i 11 |
. . . . . . 7
β’ ((π
β CRing β§ π β πΌ) β π = (π
/s (π
~QG π))) |
13 | | eqidd 2733 |
. . . . . . 7
β’ ((π
β CRing β§ π β πΌ) β (Baseβπ
) = (Baseβπ
)) |
14 | | ovexd 7440 |
. . . . . . 7
β’ ((π
β CRing β§ π β πΌ) β (π
~QG π) β V) |
15 | 12, 13, 14, 2 | qusbas 17487 |
. . . . . 6
β’ ((π
β CRing β§ π β πΌ) β ((Baseβπ
) / (π
~QG π)) = (Baseβπ)) |
16 | 15 | eleq2d 2819 |
. . . . 5
β’ ((π
β CRing β§ π β πΌ) β (π₯ β ((Baseβπ
) / (π
~QG π)) β π₯ β (Baseβπ))) |
17 | 15 | eleq2d 2819 |
. . . . 5
β’ ((π
β CRing β§ π β πΌ) β (π¦ β ((Baseβπ
) / (π
~QG π)) β π¦ β (Baseβπ))) |
18 | 16, 17 | anbi12d 631 |
. . . 4
β’ ((π
β CRing β§ π β πΌ) β ((π₯ β ((Baseβπ
) / (π
~QG π)) β§ π¦ β ((Baseβπ
) / (π
~QG π))) β (π₯ β (Baseβπ) β§ π¦ β (Baseβπ)))) |
19 | | eqid 2732 |
. . . . . 6
β’
((Baseβπ
)
/ (π
~QG π)) =
((Baseβπ
) /
(π
~QG
π)) |
20 | | oveq2 7413 |
. . . . . . 7
β’ ([π’](π
~QG π) = π¦ β (π₯(.rβπ)[π’](π
~QG π)) = (π₯(.rβπ)π¦)) |
21 | | oveq1 7412 |
. . . . . . 7
β’ ([π’](π
~QG π) = π¦ β ([π’](π
~QG π)(.rβπ)π₯) = (π¦(.rβπ)π₯)) |
22 | 20, 21 | eqeq12d 2748 |
. . . . . 6
β’ ([π’](π
~QG π) = π¦ β ((π₯(.rβπ)[π’](π
~QG π)) = ([π’](π
~QG π)(.rβπ)π₯) β (π₯(.rβπ)π¦) = (π¦(.rβπ)π₯))) |
23 | | oveq1 7412 |
. . . . . . . . 9
β’ ([π£](π
~QG π) = π₯ β ([π£](π
~QG π)(.rβπ)[π’](π
~QG π)) = (π₯(.rβπ)[π’](π
~QG π))) |
24 | | oveq2 7413 |
. . . . . . . . 9
β’ ([π£](π
~QG π) = π₯ β ([π’](π
~QG π)(.rβπ)[π£](π
~QG π)) = ([π’](π
~QG π)(.rβπ)π₯)) |
25 | 23, 24 | eqeq12d 2748 |
. . . . . . . 8
β’ ([π£](π
~QG π) = π₯ β (([π£](π
~QG π)(.rβπ)[π’](π
~QG π)) = ([π’](π
~QG π)(.rβπ)[π£](π
~QG π)) β (π₯(.rβπ)[π’](π
~QG π)) = ([π’](π
~QG π)(.rβπ)π₯))) |
26 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Baseβπ
) =
(Baseβπ
) |
27 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(.rβπ
) = (.rβπ
) |
28 | 26, 27 | crngcom 20067 |
. . . . . . . . . . 11
β’ ((π
β CRing β§ π’ β (Baseβπ
) β§ π£ β (Baseβπ
)) β (π’(.rβπ
)π£) = (π£(.rβπ
)π’)) |
29 | 28 | ad4ant134 1174 |
. . . . . . . . . 10
β’ ((((π
β CRing β§ π β πΌ) β§ π’ β (Baseβπ
)) β§ π£ β (Baseβπ
)) β (π’(.rβπ
)π£) = (π£(.rβπ
)π’)) |
30 | 29 | eceq1d 8738 |
. . . . . . . . 9
β’ ((((π
β CRing β§ π β πΌ) β§ π’ β (Baseβπ
)) β§ π£ β (Baseβπ
)) β [(π’(.rβπ
)π£)](π
~QG π) = [(π£(.rβπ
)π’)](π
~QG π)) |
31 | 4 | lidlsubg 20830 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§ π β πΌ) β π β (SubGrpβπ
)) |
32 | 1, 31 | sylan 580 |
. . . . . . . . . . . 12
β’ ((π
β CRing β§ π β πΌ) β π β (SubGrpβπ
)) |
33 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ (π
~QG π) = (π
~QG π) |
34 | 26, 33 | eqger 19052 |
. . . . . . . . . . . 12
β’ (π β (SubGrpβπ
) β (π
~QG π) Er (Baseβπ
)) |
35 | 32, 34 | syl 17 |
. . . . . . . . . . 11
β’ ((π
β CRing β§ π β πΌ) β (π
~QG π) Er (Baseβπ
)) |
36 | 26, 33, 9, 27 | 2idlcpbl 20863 |
. . . . . . . . . . . 12
β’ ((π
β Ring β§ π β (2Idealβπ
)) β ((π(π
~QG π)π β§ π(π
~QG π)π) β (π(.rβπ
)π)(π
~QG π)(π(.rβπ
)π))) |
37 | 2, 7, 36 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((π
β CRing β§ π β πΌ) β ((π(π
~QG π)π β§ π(π
~QG π)π) β (π(.rβπ
)π)(π
~QG π)(π(.rβπ
)π))) |
38 | 26, 27 | ringcl 20066 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§ π β (Baseβπ
) β§ π β (Baseβπ
)) β (π(.rβπ
)π) β (Baseβπ
)) |
39 | 38 | 3expb 1120 |
. . . . . . . . . . . 12
β’ ((π
β Ring β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π(.rβπ
)π) β (Baseβπ
)) |
40 | 2, 39 | sylan 580 |
. . . . . . . . . . 11
β’ (((π
β CRing β§ π β πΌ) β§ (π β (Baseβπ
) β§ π β (Baseβπ
))) β (π(.rβπ
)π) β (Baseβπ
)) |
41 | | eqid 2732 |
. . . . . . . . . . 11
β’
(.rβπ) = (.rβπ) |
42 | 12, 13, 35, 2, 37, 40, 27, 41 | qusmulval 17497 |
. . . . . . . . . 10
β’ (((π
β CRing β§ π β πΌ) β§ π’ β (Baseβπ
) β§ π£ β (Baseβπ
)) β ([π’](π
~QG π)(.rβπ)[π£](π
~QG π)) = [(π’(.rβπ
)π£)](π
~QG π)) |
43 | 42 | 3expa 1118 |
. . . . . . . . 9
β’ ((((π
β CRing β§ π β πΌ) β§ π’ β (Baseβπ
)) β§ π£ β (Baseβπ
)) β ([π’](π
~QG π)(.rβπ)[π£](π
~QG π)) = [(π’(.rβπ
)π£)](π
~QG π)) |
44 | 12, 13, 35, 2, 37, 40, 27, 41 | qusmulval 17497 |
. . . . . . . . . . 11
β’ (((π
β CRing β§ π β πΌ) β§ π£ β (Baseβπ
) β§ π’ β (Baseβπ
)) β ([π£](π
~QG π)(.rβπ)[π’](π
~QG π)) = [(π£(.rβπ
)π’)](π
~QG π)) |
45 | 44 | 3expa 1118 |
. . . . . . . . . 10
β’ ((((π
β CRing β§ π β πΌ) β§ π£ β (Baseβπ
)) β§ π’ β (Baseβπ
)) β ([π£](π
~QG π)(.rβπ)[π’](π
~QG π)) = [(π£(.rβπ
)π’)](π
~QG π)) |
46 | 45 | an32s 650 |
. . . . . . . . 9
β’ ((((π
β CRing β§ π β πΌ) β§ π’ β (Baseβπ
)) β§ π£ β (Baseβπ
)) β ([π£](π
~QG π)(.rβπ)[π’](π
~QG π)) = [(π£(.rβπ
)π’)](π
~QG π)) |
47 | 30, 43, 46 | 3eqtr4rd 2783 |
. . . . . . . 8
β’ ((((π
β CRing β§ π β πΌ) β§ π’ β (Baseβπ
)) β§ π£ β (Baseβπ
)) β ([π£](π
~QG π)(.rβπ)[π’](π
~QG π)) = ([π’](π
~QG π)(.rβπ)[π£](π
~QG π))) |
48 | 19, 25, 47 | ectocld 8774 |
. . . . . . 7
β’ ((((π
β CRing β§ π β πΌ) β§ π’ β (Baseβπ
)) β§ π₯ β ((Baseβπ
) / (π
~QG π))) β (π₯(.rβπ)[π’](π
~QG π)) = ([π’](π
~QG π)(.rβπ)π₯)) |
49 | 48 | an32s 650 |
. . . . . 6
β’ ((((π
β CRing β§ π β πΌ) β§ π₯ β ((Baseβπ
) / (π
~QG π))) β§ π’ β (Baseβπ
)) β (π₯(.rβπ)[π’](π
~QG π)) = ([π’](π
~QG π)(.rβπ)π₯)) |
50 | 19, 22, 49 | ectocld 8774 |
. . . . 5
β’ ((((π
β CRing β§ π β πΌ) β§ π₯ β ((Baseβπ
) / (π
~QG π))) β§ π¦ β ((Baseβπ
) / (π
~QG π))) β (π₯(.rβπ)π¦) = (π¦(.rβπ)π₯)) |
51 | 50 | expl 458 |
. . . 4
β’ ((π
β CRing β§ π β πΌ) β ((π₯ β ((Baseβπ
) / (π
~QG π)) β§ π¦ β ((Baseβπ
) / (π
~QG π))) β (π₯(.rβπ)π¦) = (π¦(.rβπ)π₯))) |
52 | 18, 51 | sylbird 259 |
. . 3
β’ ((π
β CRing β§ π β πΌ) β ((π₯ β (Baseβπ) β§ π¦ β (Baseβπ)) β (π₯(.rβπ)π¦) = (π¦(.rβπ)π₯))) |
53 | 52 | ralrimivv 3198 |
. 2
β’ ((π
β CRing β§ π β πΌ) β βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(π₯(.rβπ)π¦) = (π¦(.rβπ)π₯)) |
54 | | eqid 2732 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
55 | 54, 41 | iscrng2 20068 |
. 2
β’ (π β CRing β (π β Ring β§ βπ₯ β (Baseβπ)βπ¦ β (Baseβπ)(π₯(.rβπ)π¦) = (π¦(.rβπ)π₯))) |
56 | 11, 53, 55 | sylanbrc 583 |
1
β’ ((π
β CRing β§ π β πΌ) β π β CRing) |