Step | Hyp | Ref
| Expression |
1 | | crngring 19710 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
2 | 1 | adantr 480 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) |
3 | | simpr 484 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ 𝐼) |
4 | | quscrng.i |
. . . . . 6
⊢ 𝐼 = (LIdeal‘𝑅) |
5 | 4 | crng2idl 20423 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅)) |
6 | 5 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝐼 = (2Ideal‘𝑅)) |
7 | 3, 6 | eleqtrd 2841 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (2Ideal‘𝑅)) |
8 | | quscrng.u |
. . . 4
⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
9 | | eqid 2738 |
. . . 4
⊢
(2Ideal‘𝑅) =
(2Ideal‘𝑅) |
10 | 8, 9 | qusring 20420 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → 𝑈 ∈ Ring) |
11 | 2, 7, 10 | syl2anc 583 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ Ring) |
12 | 8 | a1i 11 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
13 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (Base‘𝑅) = (Base‘𝑅)) |
14 | | ovexd 7290 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) ∈ V) |
15 | 12, 13, 14, 2 | qusbas 17173 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = (Base‘𝑈)) |
16 | 15 | eleq2d 2824 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝑈))) |
17 | 15 | eleq2d 2824 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝑈))) |
18 | 16, 17 | anbi12d 630 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ↔ (𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)))) |
19 | | eqid 2738 |
. . . . . 6
⊢
((Base‘𝑅)
/ (𝑅
~QG 𝑆)) =
((Base‘𝑅) /
(𝑅 ~QG
𝑆)) |
20 | | oveq2 7263 |
. . . . . . 7
⊢ ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r‘𝑈)𝑦)) |
21 | | oveq1 7262 |
. . . . . . 7
⊢ ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥) = (𝑦(.r‘𝑈)𝑥)) |
22 | 20, 21 | eqeq12d 2754 |
. . . . . 6
⊢ ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ((𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥) ↔ (𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥))) |
23 | | oveq1 7262 |
. . . . . . . . 9
⊢ ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆))) |
24 | | oveq2 7263 |
. . . . . . . . 9
⊢ ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥)) |
25 | 23, 24 | eqeq12d 2754 |
. . . . . . . 8
⊢ ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → (([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆)) ↔ (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥))) |
26 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
27 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(.r‘𝑅) = (.r‘𝑅) |
28 | 26, 27 | crngcom 19716 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅)𝑣) = (𝑣(.r‘𝑅)𝑢)) |
29 | 28 | ad4ant134 1172 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r‘𝑅)𝑣) = (𝑣(.r‘𝑅)𝑢)) |
30 | 29 | eceq1d 8495 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → [(𝑢(.r‘𝑅)𝑣)](𝑅 ~QG 𝑆) = [(𝑣(.r‘𝑅)𝑢)](𝑅 ~QG 𝑆)) |
31 | 4 | lidlsubg 20399 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
32 | 1, 31 | sylan 579 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
33 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) |
34 | 26, 33 | eqger 18721 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
35 | 32, 34 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
36 | 26, 33, 9, 27 | 2idlcpbl 20418 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
37 | 2, 7, 36 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
38 | 26, 27 | ringcl 19715 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅)) → (𝑐(.r‘𝑅)𝑑) ∈ (Base‘𝑅)) |
39 | 38 | 3expb 1118 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r‘𝑅)𝑑) ∈ (Base‘𝑅)) |
40 | 2, 39 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r‘𝑅)𝑑) ∈ (Base‘𝑅)) |
41 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(.r‘𝑈) = (.r‘𝑈) |
42 | 12, 13, 35, 2, 37, 40, 27, 41 | qusmulval 17183 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r‘𝑅)𝑣)](𝑅 ~QG 𝑆)) |
43 | 42 | 3expa 1116 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r‘𝑅)𝑣)](𝑅 ~QG 𝑆)) |
44 | 12, 13, 35, 2, 37, 40, 27, 41 | qusmulval 17183 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r‘𝑅)𝑢)](𝑅 ~QG 𝑆)) |
45 | 44 | 3expa 1116 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑣 ∈ (Base‘𝑅)) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r‘𝑅)𝑢)](𝑅 ~QG 𝑆)) |
46 | 45 | an32s 648 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r‘𝑅)𝑢)](𝑅 ~QG 𝑆)) |
47 | 30, 43, 46 | 3eqtr4rd 2789 |
. . . . . . . 8
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑣](𝑅 ~QG 𝑆))) |
48 | 19, 25, 47 | ectocld 8531 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥)) |
49 | 48 | an32s 648 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑥(.r‘𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r‘𝑈)𝑥)) |
50 | 19, 22, 49 | ectocld 8531 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥)) |
51 | 50 | expl 457 |
. . . 4
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥))) |
52 | 18, 51 | sylbird 259 |
. . 3
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥))) |
53 | 52 | ralrimivv 3113 |
. 2
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥)) |
54 | | eqid 2738 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
55 | 54, 41 | iscrng2 19717 |
. 2
⊢ (𝑈 ∈ CRing ↔ (𝑈 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r‘𝑈)𝑦) = (𝑦(.r‘𝑈)𝑥))) |
56 | 11, 53, 55 | sylanbrc 582 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ CRing) |