MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quscrng Structured version   Visualization version   GIF version

Theorem quscrng 20511
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
quscrng.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
quscrng.i 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
quscrng ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)

Proof of Theorem quscrng
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19795 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 481 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
3 simpr 485 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆𝐼)
4 quscrng.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
54crng2idl 20510 . . . . 5 (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
65adantr 481 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝐼 = (2Ideal‘𝑅))
73, 6eleqtrd 2841 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (2Ideal‘𝑅))
8 quscrng.u . . . 4 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
9 eqid 2738 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
108, 9qusring 20507 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → 𝑈 ∈ Ring)
112, 7, 10syl2anc 584 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
128a1i 11 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
13 eqidd 2739 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (Base‘𝑅) = (Base‘𝑅))
14 ovexd 7310 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) ∈ V)
1512, 13, 14, 2qusbas 17256 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = (Base‘𝑈))
1615eleq2d 2824 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝑈)))
1715eleq2d 2824 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝑈)))
1816, 17anbi12d 631 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ↔ (𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈))))
19 eqid 2738 . . . . . 6 ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = ((Base‘𝑅) / (𝑅 ~QG 𝑆))
20 oveq2 7283 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)𝑦))
21 oveq1 7282 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) = (𝑦(.r𝑈)𝑥))
2220, 21eqeq12d 2754 . . . . . 6 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ((𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) ↔ (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
23 oveq1 7282 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)))
24 oveq2 7283 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
2523, 24eqeq12d 2754 . . . . . . . 8 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → (([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) ↔ (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥)))
26 eqid 2738 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
27 eqid 2738 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
2826, 27crngcom 19801 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
2928ad4ant134 1173 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
3029eceq1d 8537 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
314lidlsubg 20486 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
321, 31sylan 580 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
33 eqid 2738 . . . . . . . . . . . . 13 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
3426, 33eqger 18806 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
3532, 34syl 17 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
3626, 33, 9, 272idlcpbl 20505 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
372, 7, 36syl2anc 584 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
3826, 27ringcl 19800 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅)) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
39383expb 1119 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
402, 39sylan 580 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
41 eqid 2738 . . . . . . . . . . 11 (.r𝑈) = (.r𝑈)
4212, 13, 35, 2, 37, 40, 27, 41qusmulval 17266 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
43423expa 1117 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
4412, 13, 35, 2, 37, 40, 27, 41qusmulval 17266 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
45443expa 1117 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑣 ∈ (Base‘𝑅)) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4645an32s 649 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4730, 43, 463eqtr4rd 2789 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)))
4819, 25, 47ectocld 8573 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
4948an32s 649 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
5019, 22, 49ectocld 8573 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
5150expl 458 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5218, 51sylbird 259 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5352ralrimivv 3122 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
54 eqid 2738 . . 3 (Base‘𝑈) = (Base‘𝑈)
5554, 41iscrng2 19802 . 2 (𝑈 ∈ CRing ↔ (𝑈 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5611, 53, 55sylanbrc 583 1 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432   class class class wbr 5074  cfv 6433  (class class class)co 7275   Er wer 8495  [cec 8496   / cqs 8497  Basecbs 16912  .rcmulr 16963   /s cqus 17216  SubGrpcsubg 18749   ~QG cqg 18751  Ringcrg 19783  CRingccrg 19784  LIdealclidl 20432  2Idealc2idl 20502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-ec 8500  df-qs 8504  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-0g 17152  df-imas 17219  df-qus 17220  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-nsg 18753  df-eqg 18754  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503
This theorem is referenced by:  zncrng2  20738  qsidomlem2  31629
  Copyright terms: Public domain W3C validator