MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss Structured version   Visualization version   GIF version

Theorem metss 24424
Description: Two ways of saying that metric 𝐷 generates a finer topology than metric 𝐶. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metss ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐶   𝐽,𝑟,𝑠,𝑥   𝐾,𝑟,𝑠,𝑥   𝐷,𝑟,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥

Proof of Theorem metss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metequiv.3 . . . . 5 𝐽 = (MetOpen‘𝐶)
21mopnval 24354 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐶)))
32adantr 480 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐽 = (topGen‘ran (ball‘𝐶)))
4 metequiv.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
54mopnval 24354 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (topGen‘ran (ball‘𝐷)))
65adantl 481 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐾 = (topGen‘ran (ball‘𝐷)))
73, 6sseq12d 3964 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ (topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran (ball‘𝐷))))
8 blbas 24346 . . 3 (𝐶 ∈ (∞Met‘𝑋) → ran (ball‘𝐶) ∈ TopBases)
9 unirnbl 24336 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → ran (ball‘𝐶) = 𝑋)
109adantr 480 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐶) = 𝑋)
11 unirnbl 24336 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
1211adantl 481 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐷) = 𝑋)
1310, 12eqtr4d 2771 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐶) = ran (ball‘𝐷))
14 tgss2 22903 . . 3 ((ran (ball‘𝐶) ∈ TopBases ∧ ran (ball‘𝐶) = ran (ball‘𝐷)) → ((topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran (ball‘𝐷)) ↔ ∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦))))
158, 13, 14syl2an2r 685 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran (ball‘𝐷)) ↔ ∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦))))
1610raleqdv 3293 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑥𝑋𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦))))
17 blssex 24343 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦) ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
1817adantll 714 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦) ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
1918imbi2d 340 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → ((𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ (𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
2019ralbidv 3156 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
21 rpxr 12902 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
22 blelrn 24333 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶))
2321, 22syl3an3 1165 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ+) → (𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶))
24 blcntr 24329 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐶)𝑟))
25 eleq2 2822 . . . . . . . . . . . 12 (𝑦 = (𝑥(ball‘𝐶)𝑟) → (𝑥𝑦𝑥 ∈ (𝑥(ball‘𝐶)𝑟)))
26 sseq2 3957 . . . . . . . . . . . . 13 (𝑦 = (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐷)𝑠) ⊆ 𝑦 ↔ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
2726rexbidv 3157 . . . . . . . . . . . 12 (𝑦 = (𝑥(ball‘𝐶)𝑟) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦 ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
2825, 27imbi12d 344 . . . . . . . . . . 11 (𝑦 = (𝑥(ball‘𝐶)𝑟) → ((𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) ↔ (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))))
2928rspcv 3569 . . . . . . . . . 10 ((𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))))
3029com23 86 . . . . . . . . 9 ((𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶) → (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))))
3123, 24, 30sylc 65 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ+) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
3231ad4ant134 1175 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
3332ralrimdva 3133 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
34 blss 24341 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
35343expb 1120 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
3635ad4ant14 752 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
37 r19.29 3096 . . . . . . . . . . . 12 ((∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦))
38 sstr 3939 . . . . . . . . . . . . . . . 16 (((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
3938expcom 413 . . . . . . . . . . . . . . 15 ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4039reximdv 3148 . . . . . . . . . . . . . 14 ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4140impcom 407 . . . . . . . . . . . . 13 ((∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4241rexlimivw 3130 . . . . . . . . . . . 12 (∃𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4337, 42syl 17 . . . . . . . . . . 11 ((∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4443ex 412 . . . . . . . . . 10 (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4536, 44syl5com 31 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4645expr 456 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶)) → (𝑥𝑦 → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
4746com23 86 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶)) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
4847ralrimdva 3133 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
4933, 48impbid 212 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
5020, 49bitrd 279 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
5150ralbidva 3154 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
5216, 51bitrd 279 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
537, 15, 523bitrd 305 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   cuni 4858  ran crn 5620  cfv 6486  (class class class)co 7352  *cxr 11152  +crp 12892  topGenctg 17343  ∞Metcxmet 21278  ballcbl 21280  MetOpencmopn 21283  TopBasesctb 22861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-bl 21288  df-mopn 21289  df-bases 22862
This theorem is referenced by:  metequiv  24425  metss2  24428
  Copyright terms: Public domain W3C validator