MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss Structured version   Visualization version   GIF version

Theorem metss 24009
Description: Two ways of saying that metric 𝐷 generates a finer topology than metric 𝐢. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpenβ€˜πΆ)
metequiv.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metss ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
Distinct variable groups:   𝑠,π‘Ÿ,π‘₯,𝐢   𝐽,π‘Ÿ,𝑠,π‘₯   𝐾,π‘Ÿ,𝑠,π‘₯   𝐷,π‘Ÿ,𝑠,π‘₯   𝑋,π‘Ÿ,𝑠,π‘₯

Proof of Theorem metss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metequiv.3 . . . . 5 𝐽 = (MetOpenβ€˜πΆ)
21mopnval 23936 . . . 4 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 = (topGenβ€˜ran (ballβ€˜πΆ)))
32adantr 482 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ 𝐽 = (topGenβ€˜ran (ballβ€˜πΆ)))
4 metequiv.4 . . . . 5 𝐾 = (MetOpenβ€˜π·)
54mopnval 23936 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐾 = (topGenβ€˜ran (ballβ€˜π·)))
65adantl 483 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ 𝐾 = (topGenβ€˜ran (ballβ€˜π·)))
73, 6sseq12d 4015 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ (topGenβ€˜ran (ballβ€˜πΆ)) βŠ† (topGenβ€˜ran (ballβ€˜π·))))
8 blbas 23928 . . 3 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ ran (ballβ€˜πΆ) ∈ TopBases)
9 unirnbl 23918 . . . . 5 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜πΆ) = 𝑋)
109adantr 482 . . . 4 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ βˆͺ ran (ballβ€˜πΆ) = 𝑋)
11 unirnbl 23918 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
1211adantl 483 . . . 4 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
1310, 12eqtr4d 2776 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ βˆͺ ran (ballβ€˜πΆ) = βˆͺ ran (ballβ€˜π·))
14 tgss2 22482 . . 3 ((ran (ballβ€˜πΆ) ∈ TopBases ∧ βˆͺ ran (ballβ€˜πΆ) = βˆͺ ran (ballβ€˜π·)) β†’ ((topGenβ€˜ran (ballβ€˜πΆ)) βŠ† (topGenβ€˜ran (ballβ€˜π·)) ↔ βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦))))
158, 13, 14syl2an2r 684 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ ((topGenβ€˜ran (ballβ€˜πΆ)) βŠ† (topGenβ€˜ran (ballβ€˜π·)) ↔ βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦))))
1610raleqdv 3326 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦))))
17 blssex 23925 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦) ↔ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
1817adantll 713 . . . . . . 7 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦) ↔ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
1918imbi2d 341 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ (π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
2019ralbidv 3178 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
21 rpxr 12980 . . . . . . . . . 10 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ ℝ*)
22 blelrn 23915 . . . . . . . . . 10 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ))
2321, 22syl3an3 1166 . . . . . . . . 9 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ))
24 blcntr 23911 . . . . . . . . 9 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ))
25 eleq2 2823 . . . . . . . . . . . 12 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (π‘₯ ∈ 𝑦 ↔ π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
26 sseq2 4008 . . . . . . . . . . . . 13 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ ((π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦 ↔ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2726rexbidv 3179 . . . . . . . . . . . 12 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦 ↔ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2825, 27imbi12d 345 . . . . . . . . . . 11 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ ((π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) ↔ (π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))))
2928rspcv 3609 . . . . . . . . . 10 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ (π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))))
3029com23 86 . . . . . . . . 9 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ) β†’ (π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))))
3123, 24, 30sylc 65 . . . . . . . 8 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
3231ad4ant134 1175 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
3332ralrimdva 3155 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
34 blss 23923 . . . . . . . . . . . 12 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
35343expb 1121 . . . . . . . . . . 11 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
3635ad4ant14 751 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
37 r19.29 3115 . . . . . . . . . . . 12 ((βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦))
38 sstr 3990 . . . . . . . . . . . . . . . 16 (((π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
3938expcom 415 . . . . . . . . . . . . . . 15 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦 β†’ ((π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4039reximdv 3171 . . . . . . . . . . . . . 14 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦 β†’ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4140impcom 409 . . . . . . . . . . . . 13 ((βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4241rexlimivw 3152 . . . . . . . . . . . 12 (βˆƒπ‘Ÿ ∈ ℝ+ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4337, 42syl 17 . . . . . . . . . . 11 ((βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4443ex 414 . . . . . . . . . 10 (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4536, 44syl5com 31 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4645expr 458 . . . . . . . 8 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ ran (ballβ€˜πΆ)) β†’ (π‘₯ ∈ 𝑦 β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
4746com23 86 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ ran (ballβ€˜πΆ)) β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
4847ralrimdva 3155 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
4933, 48impbid 211 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
5020, 49bitrd 279 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
5150ralbidva 3176 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
5216, 51bitrd 279 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
537, 15, 523bitrd 305 1 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071   βŠ† wss 3948  βˆͺ cuni 4908  ran crn 5677  β€˜cfv 6541  (class class class)co 7406  β„*cxr 11244  β„+crp 12971  topGenctg 17380  βˆžMetcxmet 20922  ballcbl 20924  MetOpencmopn 20927  TopBasesctb 22440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-inf 9435  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-topgen 17386  df-psmet 20929  df-xmet 20930  df-bl 20932  df-mopn 20933  df-bases 22441
This theorem is referenced by:  metequiv  24010  metss2  24013
  Copyright terms: Public domain W3C validator