MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss Structured version   Visualization version   GIF version

Theorem metss 24447
Description: Two ways of saying that metric 𝐷 generates a finer topology than metric 𝐶. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metss ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐶   𝐽,𝑟,𝑠,𝑥   𝐾,𝑟,𝑠,𝑥   𝐷,𝑟,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥

Proof of Theorem metss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metequiv.3 . . . . 5 𝐽 = (MetOpen‘𝐶)
21mopnval 24377 . . . 4 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐶)))
32adantr 480 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐽 = (topGen‘ran (ball‘𝐶)))
4 metequiv.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
54mopnval 24377 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 = (topGen‘ran (ball‘𝐷)))
65adantl 481 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → 𝐾 = (topGen‘ran (ball‘𝐷)))
73, 6sseq12d 3992 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ (topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran (ball‘𝐷))))
8 blbas 24369 . . 3 (𝐶 ∈ (∞Met‘𝑋) → ran (ball‘𝐶) ∈ TopBases)
9 unirnbl 24359 . . . . 5 (𝐶 ∈ (∞Met‘𝑋) → ran (ball‘𝐶) = 𝑋)
109adantr 480 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐶) = 𝑋)
11 unirnbl 24359 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
1211adantl 481 . . . 4 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐷) = 𝑋)
1310, 12eqtr4d 2773 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ran (ball‘𝐶) = ran (ball‘𝐷))
14 tgss2 22925 . . 3 ((ran (ball‘𝐶) ∈ TopBases ∧ ran (ball‘𝐶) = ran (ball‘𝐷)) → ((topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran (ball‘𝐷)) ↔ ∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦))))
158, 13, 14syl2an2r 685 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → ((topGen‘ran (ball‘𝐶)) ⊆ (topGen‘ran (ball‘𝐷)) ↔ ∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦))))
1610raleqdv 3305 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑥𝑋𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦))))
17 blssex 24366 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦) ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
1817adantll 714 . . . . . . 7 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦) ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
1918imbi2d 340 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → ((𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ (𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
2019ralbidv 3163 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
21 rpxr 13018 . . . . . . . . . 10 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
22 blelrn 24356 . . . . . . . . . 10 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ*) → (𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶))
2321, 22syl3an3 1165 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ+) → (𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶))
24 blcntr 24352 . . . . . . . . 9 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐶)𝑟))
25 eleq2 2823 . . . . . . . . . . . 12 (𝑦 = (𝑥(ball‘𝐶)𝑟) → (𝑥𝑦𝑥 ∈ (𝑥(ball‘𝐶)𝑟)))
26 sseq2 3985 . . . . . . . . . . . . 13 (𝑦 = (𝑥(ball‘𝐶)𝑟) → ((𝑥(ball‘𝐷)𝑠) ⊆ 𝑦 ↔ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
2726rexbidv 3164 . . . . . . . . . . . 12 (𝑦 = (𝑥(ball‘𝐶)𝑟) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦 ↔ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
2825, 27imbi12d 344 . . . . . . . . . . 11 (𝑦 = (𝑥(ball‘𝐶)𝑟) → ((𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) ↔ (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))))
2928rspcv 3597 . . . . . . . . . 10 ((𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))))
3029com23 86 . . . . . . . . 9 ((𝑥(ball‘𝐶)𝑟) ∈ ran (ball‘𝐶) → (𝑥 ∈ (𝑥(ball‘𝐶)𝑟) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))))
3123, 24, 30sylc 65 . . . . . . . 8 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑟 ∈ ℝ+) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
3231ad4ant134 1175 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
3332ralrimdva 3140 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) → ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
34 blss 24364 . . . . . . . . . . . 12 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
35343expb 1120 . . . . . . . . . . 11 ((𝐶 ∈ (∞Met‘𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
3635ad4ant14 752 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦)
37 r19.29 3101 . . . . . . . . . . . 12 ((∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦))
38 sstr 3967 . . . . . . . . . . . . . . . 16 (((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
3938expcom 413 . . . . . . . . . . . . . . 15 ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4039reximdv 3155 . . . . . . . . . . . . . 14 ((𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4140impcom 407 . . . . . . . . . . . . 13 ((∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4241rexlimivw 3137 . . . . . . . . . . . 12 (∃𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4337, 42syl 17 . . . . . . . . . . 11 ((∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)
4443ex 412 . . . . . . . . . 10 (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (∃𝑟 ∈ ℝ+ (𝑥(ball‘𝐶)𝑟) ⊆ 𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4536, 44syl5com 31 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ (𝑦 ∈ ran (ball‘𝐶) ∧ 𝑥𝑦)) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦))
4645expr 456 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶)) → (𝑥𝑦 → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
4746com23 86 . . . . . . 7 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑦 ∈ ran (ball‘𝐶)) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → (𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
4847ralrimdva 3140 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) → ∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦)))
4933, 48impbid 212 . . . . 5 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ 𝑦) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
5020, 49bitrd 279 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
5150ralbidva 3161 . . 3 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
5216, 51bitrd 279 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ran (ball‘𝐶)∀𝑦 ∈ ran (ball‘𝐶)(𝑥𝑦 → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑦)) ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
537, 15, 523bitrd 305 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽𝐾 ↔ ∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926   cuni 4883  ran crn 5655  cfv 6531  (class class class)co 7405  *cxr 11268  +crp 13008  topGenctg 17451  ∞Metcxmet 21300  ballcbl 21302  MetOpencmopn 21305  TopBasesctb 22883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-bl 21310  df-mopn 21311  df-bases 22884
This theorem is referenced by:  metequiv  24448  metss2  24451
  Copyright terms: Public domain W3C validator