Step | Hyp | Ref
| Expression |
1 | | metequiv.3 |
. . . . 5
β’ π½ = (MetOpenβπΆ) |
2 | 1 | mopnval 23936 |
. . . 4
β’ (πΆ β (βMetβπ) β π½ = (topGenβran (ballβπΆ))) |
3 | 2 | adantr 482 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β π½ = (topGenβran (ballβπΆ))) |
4 | | metequiv.4 |
. . . . 5
β’ πΎ = (MetOpenβπ·) |
5 | 4 | mopnval 23936 |
. . . 4
β’ (π· β (βMetβπ) β πΎ = (topGenβran (ballβπ·))) |
6 | 5 | adantl 483 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β πΎ = (topGenβran (ballβπ·))) |
7 | 3, 6 | sseq12d 4015 |
. 2
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ β πΎ β (topGenβran (ballβπΆ)) β (topGenβran
(ballβπ·)))) |
8 | | blbas 23928 |
. . 3
β’ (πΆ β (βMetβπ) β ran (ballβπΆ) β
TopBases) |
9 | | unirnbl 23918 |
. . . . 5
β’ (πΆ β (βMetβπ) β βͺ ran (ballβπΆ) = π) |
10 | 9 | adantr 482 |
. . . 4
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β βͺ ran
(ballβπΆ) = π) |
11 | | unirnbl 23918 |
. . . . 5
β’ (π· β (βMetβπ) β βͺ ran (ballβπ·) = π) |
12 | 11 | adantl 483 |
. . . 4
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β βͺ ran
(ballβπ·) = π) |
13 | 10, 12 | eqtr4d 2776 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β βͺ ran
(ballβπΆ) = βͺ ran (ballβπ·)) |
14 | | tgss2 22482 |
. . 3
β’ ((ran
(ballβπΆ) β
TopBases β§ βͺ ran (ballβπΆ) = βͺ ran
(ballβπ·)) β
((topGenβran (ballβπΆ)) β (topGenβran
(ballβπ·)) β
βπ₯ β βͺ ran (ballβπΆ)βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)))) |
15 | 8, 13, 14 | syl2an2r 684 |
. 2
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β ((topGenβran
(ballβπΆ)) β
(topGenβran (ballβπ·)) β βπ₯ β βͺ ran
(ballβπΆ)βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)))) |
16 | 10 | raleqdv 3326 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (βπ₯ β βͺ ran
(ballβπΆ)βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ₯ β π βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)))) |
17 | | blssex 23925 |
. . . . . . . 8
β’ ((π· β (βMetβπ) β§ π₯ β π) β (βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
18 | 17 | adantll 713 |
. . . . . . 7
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
19 | 18 | imbi2d 341 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β ((π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β (π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
20 | 19 | ralbidv 3178 |
. . . . 5
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
21 | | rpxr 12980 |
. . . . . . . . . 10
β’ (π β β+
β π β
β*) |
22 | | blelrn 23915 |
. . . . . . . . . 10
β’ ((πΆ β (βMetβπ) β§ π₯ β π β§ π β β*) β (π₯(ballβπΆ)π) β ran (ballβπΆ)) |
23 | 21, 22 | syl3an3 1166 |
. . . . . . . . 9
β’ ((πΆ β (βMetβπ) β§ π₯ β π β§ π β β+) β (π₯(ballβπΆ)π) β ran (ballβπΆ)) |
24 | | blcntr 23911 |
. . . . . . . . 9
β’ ((πΆ β (βMetβπ) β§ π₯ β π β§ π β β+) β π₯ β (π₯(ballβπΆ)π)) |
25 | | eleq2 2823 |
. . . . . . . . . . . 12
β’ (π¦ = (π₯(ballβπΆ)π) β (π₯ β π¦ β π₯ β (π₯(ballβπΆ)π))) |
26 | | sseq2 4008 |
. . . . . . . . . . . . 13
β’ (π¦ = (π₯(ballβπΆ)π) β ((π₯(ballβπ·)π ) β π¦ β (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
27 | 26 | rexbidv 3179 |
. . . . . . . . . . . 12
β’ (π¦ = (π₯(ballβπΆ)π) β (βπ β β+ (π₯(ballβπ·)π ) β π¦ β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
28 | 25, 27 | imbi12d 345 |
. . . . . . . . . . 11
β’ (π¦ = (π₯(ballβπΆ)π) β ((π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β (π₯ β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)))) |
29 | 28 | rspcv 3609 |
. . . . . . . . . 10
β’ ((π₯(ballβπΆ)π) β ran (ballβπΆ) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β (π₯ β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)))) |
30 | 29 | com23 86 |
. . . . . . . . 9
β’ ((π₯(ballβπΆ)π) β ran (ballβπΆ) β (π₯ β (π₯(ballβπΆ)π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)))) |
31 | 23, 24, 30 | sylc 65 |
. . . . . . . 8
β’ ((πΆ β (βMetβπ) β§ π₯ β π β§ π β β+) β
(βπ¦ β ran
(ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
32 | 31 | ad4ant134 1175 |
. . . . . . 7
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ π β β+) β
(βπ¦ β ran
(ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
33 | 32 | ralrimdva 3155 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
34 | | blss 23923 |
. . . . . . . . . . . 12
β’ ((πΆ β (βMetβπ) β§ π¦ β ran (ballβπΆ) β§ π₯ β π¦) β βπ β β+ (π₯(ballβπΆ)π) β π¦) |
35 | 34 | 3expb 1121 |
. . . . . . . . . . 11
β’ ((πΆ β (βMetβπ) β§ (π¦ β ran (ballβπΆ) β§ π₯ β π¦)) β βπ β β+ (π₯(ballβπΆ)π) β π¦) |
36 | 35 | ad4ant14 751 |
. . . . . . . . . 10
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ (π¦ β ran (ballβπΆ) β§ π₯ β π¦)) β βπ β β+ (π₯(ballβπΆ)π) β π¦) |
37 | | r19.29 3115 |
. . . . . . . . . . . 12
β’
((βπ β
β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ (π₯(ballβπΆ)π) β π¦) β βπ β β+ (βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π) β π¦)) |
38 | | sstr 3990 |
. . . . . . . . . . . . . . . 16
β’ (((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π) β π¦) β (π₯(ballβπ·)π ) β π¦) |
39 | 38 | expcom 415 |
. . . . . . . . . . . . . . 15
β’ ((π₯(ballβπΆ)π) β π¦ β ((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β (π₯(ballβπ·)π ) β π¦)) |
40 | 39 | reximdv 3171 |
. . . . . . . . . . . . . 14
β’ ((π₯(ballβπΆ)π) β π¦ β (βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
41 | 40 | impcom 409 |
. . . . . . . . . . . . 13
β’
((βπ β
β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦) |
42 | 41 | rexlimivw 3152 |
. . . . . . . . . . . 12
β’
(βπ β
β+ (βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ (π₯(ballβπΆ)π) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦) |
43 | 37, 42 | syl 17 |
. . . . . . . . . . 11
β’
((βπ β
β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β§ βπ β β+ (π₯(ballβπΆ)π) β π¦) β βπ β β+ (π₯(ballβπ·)π ) β π¦) |
44 | 43 | ex 414 |
. . . . . . . . . 10
β’
(βπ β
β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β (βπ β β+ (π₯(ballβπΆ)π) β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
45 | 36, 44 | syl5com 31 |
. . . . . . . . 9
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ (π¦ β ran (ballβπΆ) β§ π₯ β π¦)) β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β π¦)) |
46 | 45 | expr 458 |
. . . . . . . 8
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ π¦ β ran (ballβπΆ)) β (π₯ β π¦ β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
47 | 46 | com23 86 |
. . . . . . 7
β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β§ π¦ β ran (ballβπΆ)) β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β (π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
48 | 47 | ralrimdva 3155 |
. . . . . 6
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦))) |
49 | 33, 48 | impbid 211 |
. . . . 5
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ β β+ (π₯(ballβπ·)π ) β π¦) β βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
50 | 20, 49 | bitrd 279 |
. . . 4
β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ π₯ β π) β (βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
51 | 50 | ralbidva 3176 |
. . 3
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (βπ₯ β π βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ₯ β π βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
52 | 16, 51 | bitrd 279 |
. 2
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (βπ₯ β βͺ ran
(ballβπΆ)βπ¦ β ran (ballβπΆ)(π₯ β π¦ β βπ§ β ran (ballβπ·)(π₯ β π§ β§ π§ β π¦)) β βπ₯ β π βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
53 | 7, 15, 52 | 3bitrd 305 |
1
β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ β πΎ β βπ₯ β π βπ β β+ βπ β β+
(π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |