MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metss Structured version   Visualization version   GIF version

Theorem metss 24337
Description: Two ways of saying that metric 𝐷 generates a finer topology than metric 𝐢. (Contributed by Mario Carneiro, 12-Nov-2013.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpenβ€˜πΆ)
metequiv.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metss ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
Distinct variable groups:   𝑠,π‘Ÿ,π‘₯,𝐢   𝐽,π‘Ÿ,𝑠,π‘₯   𝐾,π‘Ÿ,𝑠,π‘₯   𝐷,π‘Ÿ,𝑠,π‘₯   𝑋,π‘Ÿ,𝑠,π‘₯

Proof of Theorem metss
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metequiv.3 . . . . 5 𝐽 = (MetOpenβ€˜πΆ)
21mopnval 24264 . . . 4 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 = (topGenβ€˜ran (ballβ€˜πΆ)))
32adantr 480 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ 𝐽 = (topGenβ€˜ran (ballβ€˜πΆ)))
4 metequiv.4 . . . . 5 𝐾 = (MetOpenβ€˜π·)
54mopnval 24264 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐾 = (topGenβ€˜ran (ballβ€˜π·)))
65adantl 481 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ 𝐾 = (topGenβ€˜ran (ballβ€˜π·)))
73, 6sseq12d 4015 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ (topGenβ€˜ran (ballβ€˜πΆ)) βŠ† (topGenβ€˜ran (ballβ€˜π·))))
8 blbas 24256 . . 3 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ ran (ballβ€˜πΆ) ∈ TopBases)
9 unirnbl 24246 . . . . 5 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜πΆ) = 𝑋)
109adantr 480 . . . 4 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ βˆͺ ran (ballβ€˜πΆ) = 𝑋)
11 unirnbl 24246 . . . . 5 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
1211adantl 481 . . . 4 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ βˆͺ ran (ballβ€˜π·) = 𝑋)
1310, 12eqtr4d 2774 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ βˆͺ ran (ballβ€˜πΆ) = βˆͺ ran (ballβ€˜π·))
14 tgss2 22810 . . 3 ((ran (ballβ€˜πΆ) ∈ TopBases ∧ βˆͺ ran (ballβ€˜πΆ) = βˆͺ ran (ballβ€˜π·)) β†’ ((topGenβ€˜ran (ballβ€˜πΆ)) βŠ† (topGenβ€˜ran (ballβ€˜π·)) ↔ βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦))))
158, 13, 14syl2an2r 682 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ ((topGenβ€˜ran (ballβ€˜πΆ)) βŠ† (topGenβ€˜ran (ballβ€˜π·)) ↔ βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦))))
1610raleqdv 3324 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦))))
17 blssex 24253 . . . . . . . 8 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦) ↔ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
1817adantll 711 . . . . . . 7 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦) ↔ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
1918imbi2d 340 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ (π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
2019ralbidv 3176 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
21 rpxr 12990 . . . . . . . . . 10 (π‘Ÿ ∈ ℝ+ β†’ π‘Ÿ ∈ ℝ*)
22 blelrn 24243 . . . . . . . . . 10 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ*) β†’ (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ))
2321, 22syl3an3 1164 . . . . . . . . 9 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ))
24 blcntr 24239 . . . . . . . . 9 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ))
25 eleq2 2821 . . . . . . . . . . . 12 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (π‘₯ ∈ 𝑦 ↔ π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
26 sseq2 4008 . . . . . . . . . . . . 13 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ ((π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦 ↔ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2726rexbidv 3177 . . . . . . . . . . . 12 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦 ↔ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2825, 27imbi12d 344 . . . . . . . . . . 11 (𝑦 = (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ ((π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) ↔ (π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))))
2928rspcv 3608 . . . . . . . . . 10 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ (π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))))
3029com23 86 . . . . . . . . 9 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) ∈ ran (ballβ€˜πΆ) β†’ (π‘₯ ∈ (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))))
3123, 24, 30sylc 65 . . . . . . . 8 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
3231ad4ant134 1173 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ π‘Ÿ ∈ ℝ+) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
3332ralrimdva 3153 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) β†’ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
34 blss 24251 . . . . . . . . . . . 12 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
35343expb 1119 . . . . . . . . . . 11 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
3635ad4ant14 749 . . . . . . . . . 10 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦)
37 r19.29 3113 . . . . . . . . . . . 12 ((βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘Ÿ ∈ ℝ+ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦))
38 sstr 3990 . . . . . . . . . . . . . . . 16 (((π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
3938expcom 413 . . . . . . . . . . . . . . 15 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦 β†’ ((π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4039reximdv 3169 . . . . . . . . . . . . . 14 ((π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦 β†’ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4140impcom 407 . . . . . . . . . . . . 13 ((βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4241rexlimivw 3150 . . . . . . . . . . . 12 (βˆƒπ‘Ÿ ∈ ℝ+ (βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4337, 42syl 17 . . . . . . . . . . 11 ((βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ∧ βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)
4443ex 412 . . . . . . . . . 10 (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (βˆƒπ‘Ÿ ∈ ℝ+ (π‘₯(ballβ€˜πΆ)π‘Ÿ) βŠ† 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4536, 44syl5com 31 . . . . . . . . 9 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ (𝑦 ∈ ran (ballβ€˜πΆ) ∧ π‘₯ ∈ 𝑦)) β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦))
4645expr 456 . . . . . . . 8 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ ran (ballβ€˜πΆ)) β†’ (π‘₯ ∈ 𝑦 β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
4746com23 86 . . . . . . 7 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ ran (ballβ€˜πΆ)) β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ (π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
4847ralrimdva 3153 . . . . . 6 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) β†’ βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦)))
4933, 48impbid 211 . . . . 5 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† 𝑦) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
5020, 49bitrd 279 . . . 4 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) ∧ π‘₯ ∈ 𝑋) β†’ (βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
5150ralbidva 3174 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
5216, 51bitrd 279 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (βˆ€π‘₯ ∈ βˆͺ ran (ballβ€˜πΆ)βˆ€π‘¦ ∈ ran (ballβ€˜πΆ)(π‘₯ ∈ 𝑦 β†’ βˆƒπ‘§ ∈ ran (ballβ€˜π·)(π‘₯ ∈ 𝑧 ∧ 𝑧 βŠ† 𝑦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
537, 15, 523bitrd 305 1 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  βˆƒwrex 3069   βŠ† wss 3948  βˆͺ cuni 4908  ran crn 5677  β€˜cfv 6543  (class class class)co 7412  β„*cxr 11254  β„+crp 12981  topGenctg 17390  βˆžMetcxmet 21218  ballcbl 21220  MetOpencmopn 21223  TopBasesctb 22768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-topgen 17396  df-psmet 21225  df-xmet 21226  df-bl 21228  df-mopn 21229  df-bases 22769
This theorem is referenced by:  metequiv  24338  metss2  24341
  Copyright terms: Public domain W3C validator