Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralxfrd2 | Structured version Visualization version GIF version |
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of ralxfrd 5326. (Contributed by Alexander van der Vekens, 25-Apr-2018.) |
Ref | Expression |
---|---|
ralxfrd2.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
ralxfrd2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
ralxfrd2.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralxfrd2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfrd2.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | |
2 | ralxfrd2.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | 3expa 1116 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | rspcdv 3543 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
5 | 4 | ralrimdva 3112 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → ∀𝑦 ∈ 𝐶 𝜒)) |
6 | ralxfrd2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
7 | r19.29 3183 | . . . . 5 ⊢ ((∀𝑦 ∈ 𝐶 𝜒 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → ∃𝑦 ∈ 𝐶 (𝜒 ∧ 𝑥 = 𝐴)) | |
8 | 2 | ad4ant134 1172 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
9 | 8 | exbiri 807 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 → (𝜒 → 𝜓))) |
10 | 9 | impcomd 411 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐶) → ((𝜒 ∧ 𝑥 = 𝐴) → 𝜓)) |
11 | 10 | rexlimdva 3212 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑦 ∈ 𝐶 (𝜒 ∧ 𝑥 = 𝐴) → 𝜓)) |
12 | 7, 11 | syl5 34 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑦 ∈ 𝐶 𝜒 ∧ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) → 𝜓)) |
13 | 6, 12 | mpan2d 690 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐶 𝜒 → 𝜓)) |
14 | 13 | ralrimdva 3112 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ 𝐶 𝜒 → ∀𝑥 ∈ 𝐵 𝜓)) |
15 | 5, 14 | impbid 211 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rexxfrd2 5331 ntrclsiso 41566 ntrclsk2 41567 ntrclskb 41568 ntrclsk3 41569 ntrclsk13 41570 ntrclsk4 41571 |
Copyright terms: Public domain | W3C validator |