MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxfrd2 Structured version   Visualization version   GIF version

Theorem ralxfrd2 5278
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Variant of ralxfrd 5274. (Contributed by Alexander van der Vekens, 25-Apr-2018.)
Hypotheses
Ref Expression
ralxfrd2.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
ralxfrd2.2 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
ralxfrd2.3 ((𝜑𝑦𝐶𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralxfrd2 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)   𝐶(𝑦)

Proof of Theorem ralxfrd2
StepHypRef Expression
1 ralxfrd2.1 . . . 4 ((𝜑𝑦𝐶) → 𝐴𝐵)
2 ralxfrd2.3 . . . . 5 ((𝜑𝑦𝐶𝑥 = 𝐴) → (𝜓𝜒))
323expa 1115 . . . 4 (((𝜑𝑦𝐶) ∧ 𝑥 = 𝐴) → (𝜓𝜒))
41, 3rspcdv 3563 . . 3 ((𝜑𝑦𝐶) → (∀𝑥𝐵 𝜓𝜒))
54ralrimdva 3154 . 2 (𝜑 → (∀𝑥𝐵 𝜓 → ∀𝑦𝐶 𝜒))
6 ralxfrd2.2 . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
7 r19.29 3216 . . . . 5 ((∀𝑦𝐶 𝜒 ∧ ∃𝑦𝐶 𝑥 = 𝐴) → ∃𝑦𝐶 (𝜒𝑥 = 𝐴))
82ad4ant134 1171 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐶) ∧ 𝑥 = 𝐴) → (𝜓𝜒))
98exbiri 810 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐶) → (𝑥 = 𝐴 → (𝜒𝜓)))
109impcomd 415 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐶) → ((𝜒𝑥 = 𝐴) → 𝜓))
1110rexlimdva 3243 . . . . 5 ((𝜑𝑥𝐵) → (∃𝑦𝐶 (𝜒𝑥 = 𝐴) → 𝜓))
127, 11syl5 34 . . . 4 ((𝜑𝑥𝐵) → ((∀𝑦𝐶 𝜒 ∧ ∃𝑦𝐶 𝑥 = 𝐴) → 𝜓))
136, 12mpan2d 693 . . 3 ((𝜑𝑥𝐵) → (∀𝑦𝐶 𝜒𝜓))
1413ralrimdva 3154 . 2 (𝜑 → (∀𝑦𝐶 𝜒 → ∀𝑥𝐵 𝜓))
155, 14impbid 215 1 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-ex 1782  df-cleq 2791  df-clel 2870  df-ral 3111  df-rex 3112
This theorem is referenced by:  rexxfrd2  5279  ntrclsiso  40770  ntrclsk2  40771  ntrclskb  40772  ntrclsk3  40773  ntrclsk13  40774  ntrclsk4  40775
  Copyright terms: Public domain W3C validator